
!"#$%&'()*+,-&#.-*%(/*0'//1#2%$#3*+4""5$&'()*65(&$511#/*7(&#$%8&'5(

9,*0%:*;%'1"#$'(

<=#*85..#$8'%11,*"491'-=#/*>#$-'5(*5?*&='-*25$@*A7+BC*DEFGHEHIGJKELM*2%-*65",$')=&*N*IDDO*9,*<=5.-5(*654$-#*

<#8=(515),P*%*/'>'-'5(*5?*<=5.-5(*Q#%$('()P*7(8RP*"4$-4%(&*&5*%(*%--')(.#(&*5?*$')=&-*?$5.*&=#*%4&=5$R

<='-*?$##*$#E$#1#%-#*'-*65",$')=&*N*IDDFEIDSD*9,*0%:*;%'1"#$'(P*"4$-4%(&*&5*%(*%--')(.#(&*5?*&=#*$')=&-*9%8@*&5*='.*9,*

654$-#*<#8=(515),P*%*/'>'-'5(*5?*6#()%)#*Q#%$('()P*7(8RP*-488#--5$E'(E'(&#$#-&*&5*&=#*"491'-=#$R**T')=&-*&5*'114-&$%&'5(-*

$#(/#$#/*9,*&=#*"491'-=#$*2#$#*%1-5*%--')(#/*9,*654$-#*<#8=(515),*&5*0%:*;%'1"#$'(*%(/*&=5-#*'114-&$%&'5(-*%$#*'(814/#/*'(*

&=#*1'8#(-#*=#*)$%(&-*?5$*&='-*?$##*$#E$#1#%-#R

<='-*25$@*'-*1'8#(-#/*4(/#$*&=#*6$#%&'>#*65..5(-*U&&$'94&'5(E+=%$#U1'@#*GRD*V('&#/*+&%&#-*Q'8#(-#R*<5*>'#2*%*85",*5?*&='-*

1'8#(-#P*>'-'&*=&&"3WW8$#%&'>#85..5(-R5$)W1'8#(-#-W9,E-%WGRDW4-W*5$*-#(/*%*1#&&#$*&5*6$#%&'>#*65..5(-P*SOS*+#85(/*+&$##&P*

+4'&#*GDDP*+%(*X$%(8'-85P*6%1'?5$('%P*KHSDFP*V+UR

<=#*?$##*$#E$#1#%-#*2%-*"$#"%$#/*?$5.*?'(%1*"%)#*"$55?-*%(/*-=541/*9#*85."1#,*'/#(&'8%1*&5*&=#*85..#$8'%11,*"491'-=#/ *

>#$-'5(R**7(*"%$&'841%$P*%11*&=#*#$$%&%*1'-&#/*5(*&=#*2#9*-'&#*-&'11*%""1,R**A<=#*%4&=5$*'(&#(/-*&5*$#1#%-#*-49-#Y4#(&*>#$-'5(-*&=%& *

'(85$"5$%&#*&=#*85$$#8&'5(-*%-*2#11*%-*4"/%&#-*%(/*'."$5>#.#(&-R**+49-#Y4#(&*>#$-'5(-*.%,*%1-5*9#*'(*%*.5$#*#%-'1, *

.5/'?'%91#*?5$.*&5*#(854$%)#*"%$&'8'"%&'5(*9,*5&=#$*85(&$'94&5$-R**Z1#%-#*#.%'1*-4))#-&'5(-*&5*.%:[)4-&%>4-R#/4RM

6$#/'&-*?$5.*&=#*85..#$8'%11,*"491'-=#/*>#$-'5(3

+#('5$*Z$5/48&*0%(%)#$3*U1,--%*Z$%&&

0%(%)'()*\/'&5$3*0%$,*X$%(]

^#>#15".#(&*\/'&5$3*_'11*B%&'-&'8@

+#('5$*0%$@#&'()*0%(%)#$3*`%$#(*+#'&]

U--58'%&#*Z$5/48&*0%(%)#$3*_#(('?#$*+.'&=

\/'&5$'%1*U--'-&%(&3*U11'-5(*04$"=,

+#('5$*0%(4?%8&4$'()*655$/'(%&5$3*_4-&'(*Z%1.#'$5

65>#$*^#-')(#$3*^#95$%=*a%(T55,#(

65."5-'&5$3*7(&#$%8&'>#*65."5-'&'5(*65$"5$%&'5(

hailperin-163001 book December 7, 2005 10:25

Index

Note:

• Page numbers in bold type indicate term introductions/definitions.
• Page numbers in italic type indicate illustrations.
• Page numbers followed by q indicate quotations.
• Page numbers followed by (2) indicate two separate discussions.
• Cross-reference targets beginning with “:——” indicate the current main heading in cross-references

from one subheading to another.

Symbols
& (ampersand): shell command character, 228
∗-property, 410
> (greater than sign): redirect standard output

symbol, 276
< (less than sign): redirect standard input

symbol, 276
+ (plus sign): wildcard character, 372–373
(pound sign): wildcard character, 373
/ (slash character): pathname delimiter, 276

Numbers
3DES (encryption standard), 362
32-bit systems:

address space, 186–187
multilevel page tables, 190
and multiple address space systems,

234
64-bit systems:

address space, 187
and multiple address space systems,

234

A
abort actions (operations), 125, 129

compensating for not executing in workflow
systems, 134–135

upon restart, 148–149
and undo logs, 148

abstract datatypes, 314
abstraction:

of hardware resources, 4
of transactions, 157, 158

access control bits:
linear page table entry valid bits, 185–186,

186, 237
in protection key registers, 237

access control lists. See ACLs

access matrix/matrices, 238, 239
capabilities and, 244
change mechanisms, 238–239
fitting protection mechanisms into, 240
general model, 240–241
print resource on, 240, 267

access permissions. See permissions (file access
permissions)

access points (in networks), 325, 356
access rights (of processes), 221

control policy categories, 241
directed. See capabilities
fundamentals, 237–241
mechanism for granting, 228–229
sets (protection domains), 238; structure. See

access matrix/matrices; switching mechanism,
228–229, 238(2)

See also ACLs (access control lists); permissions
access services, 269

forms, 270
access time. See disk access time
accountability (security objective), 16, 398
ACID test of system support for transactions,

125
print resource on, 163

ACLs (access control lists), 245–252, 300–301
for files, 250
MAC systems with, 410
messaging system use of, 387
Microsoft Windows example, 245–246,

246–248
NTFS storage of, 301
permission specification, 250; sticky bit

limitation, 251
restricted form (POSIX), 249–252
RPC server use of, 387
as used with capabilities, 251–252

activation record stacks. See stacks

! 444 "

hailperin-163001 book December 7, 2005 10:25

Index ! 445

activation records, 428, 433
local array buffer overflow/input overwrite

vulnerabilities, 412–414, 414, 433
register saves and restores as into and from,

432–433
activations. See procedure activations
address mapping (translation), 168–169, 180–181,

181, 182
granularity, 180
hashed table mapping, 196, 196
IA-32 paged mapping, 191–193, 192
limitation mechanism, 169
linear page table mapping, 186, 186,

188–189, 189
process switching and, 185
recent address translation storage. See TLBs

(translation lookaside buffers)
tables for. See address-mapping table; page tables;

segment table
Address Resolution Protocol (ARP), 356
address space (virtual address space):

copying, 223
identifiers (ASIDs), 185
multiple address space systems, 234–235
as private storage, 169, 170–171
of processes, 172; child processes, 223
protection schemes, 231–232, 234–237
regions, 171
segmentation of. See segmentation (of

address space)
single address space systems, 235–237; print

resources on, 267
sparse address space allocation, 176–177
thread groups sharing. See processes

address space identifiers (ASIDs), 185
address translation. See address mapping

(translation)
address-mapping function, 168

See also address-mapping table; page tables;
segment table; TLBs (translation
lookaside buffers)

address-mapping table, 168–169
page type. See page tables
segment table, 198

addressable capabilities, 243
preventing forgery of, 243–244
print resources on, 267
research systems, 267

addresses (memory addresses), 165–169
mapping of. See address mapping (translation)
processor vs. memory uses of, 166–167
return addresses, 431–432
See also physical addresses; virtual addresses

Advanced Encryption Standard (AES), 362
adversaries (of systems), 397, 401

arbitrary code execution by, 412–413
decoy systems (honeypots) for, 419

Adya, Atul, 164
AES (Advanced Encryption Standard), 362
affinity: processor affinity (for threads), 45, 46
Aho, Alfred V., 219
aliases: domain names as, 336
allocate operation (stacks), 429–430, 431
AMD64 architecture:

multilevel page tables, 194
print resource on, 218

ampersand (&): shell command character, 228
Anderson, Dave, 322
anomaly detection: with IDSes, 360–361, 418
antivirus scanning programs, 414
API services as provided by operating systems or

middleware, 6
APIs (Application Programming Interfaces), 4–5

file APIs, 13
interfaces used in this book, 22
portable and non-portable APIs, 22
socket APIs, 340–344
threads support, 10
transport protocol support, 331
See also Java API; POSIX API; pthreads API

application layer (in networking systems), 14–15,
329, 330, 332–339

security problems and enhancements, 358
Web communication example, 332–334

Application Programming Interfaces. See APIs
application programs (programs), 14–15

address use, 166
application protocol support, 331
avoiding quadratic growth in code size,

162–163
demand-driven loading, 178
distributed applications, 15
gift programs and Trojan horses, 258
library support–application systems, 4
limiting program actions, 411
loading and running, 224–227; programming

examples, 226, 227
middleware and, 6–7; distributed applications, 15
multiple-threaded. See multiple-threaded

programs
operating system–application process boundary,

12, 232–233, 232, 233
operating systems and, 4–5
running: loading and running, 224–227;

programming examples, 226, 227, 277; from
shells, 225, 227–228, 276–278

single-threaded programs, 20
spatial locality, 45
temporal locality, 45
thread–program distinction, 19
write permission vulnerability, 258

application protocols, 328, 330, 332
SSL (Secure Sockets Layer), 358
support sources, 331–332

hailperin-163001 book December 7, 2005 10:25

446 ! Index

arbitrary code execution by adversaries, 412–413
ARP (Address Resolution Protocol), 356
arrays:

local array buffer overflow vulnerabilities/attacks,
412–414, 414, 433

storing buffers with Lists vs., 100
AS/400 (IBM), 237

print resource on, 267
ASIDs (address space identifiers), 185

segmentation-ASID comparison, 201
associativity (of caches), 204
assurance (product security assurance), 414–417
assurance requirements:

at EALs, 415–416
in PPs and STs, 415

asymmetric-key encryption (cryptography), 362
RSA system, 362–363

Atlas computer, 217, 218
print resources on, 218

atomic exchange operations, 83–84
atomic transactions. See transactions
atomicity (of exchange operations), 83–84
atomicity (of transactions), 124–125, 125–126

aspects, 124, 137
failure atomicity, 124, 144–145; ad hoc

programming difficulties, 145, 146, 157; and
durability, 148–149; in system crashes, 164;
undo logging (transaction processing system),
145–147

mechanisms for ensuring, 137–147
attacks:

buffer overflow attacks, 412–414, 414
denial of service (DoS) attacks, 65–67, 157,

358, 412
isolation of machines exposed to, 360
replay attacks, 406
risk-management approach to, 397
rollback of transactions as a sign of, 157
spoofing attacks, 402–403, 402
See also vulnerabilities

authentication (of users), 16, 388–390, 398
basic authentication, 388
biometric authentication, 405, 406
mutual authentication, 389
password authentication: with

cryptographic hash functions, 363, 364,
403–404; weaknesses, 388, 401–402

as the prerequisite of security, 398
two-factor authentication, 405–406

availability (security objective), 16, 398

B
B-trees (balanced search trees), 290, 291,

297–300, 309–310
vs. binary search trees, 298
inserting an entry into a full node, 299, 299
nodes, 298; root node, 298, 299

in persistence systems, 298
print resource on, 299, 323

B+-trees, 290, 299–300, 300, 318
print resource on, 323

Babaoglu, Ozalp, 219
back doors, 418
balanced search trees (B-trees), 290, 291
Banga, Gaurav, 71
barriers (barrier synchronization), 92–93, 93

monitors with condition variables and, 98
base priorities, 58

in decay usage scheduling, 59–62
basic authentication, 388
basic spinlocks, 83–84, 84
batch processing, 47–48
Bayer, R., 299, 323
Belady, L. A., 219
Belady’s anomaly, 210
Bell-LaPadula model, 409–411

print resource on, 426
Bellovin, Steven M., 426
Bernstein, Philip A., 18, 163, 164
best security practices, 419–421
best-fit policies (disk space allocation), 290
bin hopping, 205

print resource on, 219
binary search trees: vs. B-trees, 298
binding (of sockets): to their own addresses, 340
bindings (in registries), 376
biometric authentication, 405, 406
biometric identification, 406
bitmaps (of disk space allocation), 288–289, 290
Blasgen, Mike, 122
block groups (of disk blocks), 288–289

selecting for a new inode, 320
block mapping (in file systems), 283, 291, 295
block maps, 295
book objectives, 7–9
book overview, xvii–xviii, 1
bound state (of sockets), 340–342
boundaries: operating system–application process

boundary, 12, 232, 233
bounded buffers, 89–91

monitors with condition variables and, 94–98
semaphores and, 98, 121

BoundedBuffer class, 94–98, 95, 99–100, 100
testing, 94

Brinch Hansen, Per, 122
brokers (in publish/subscribe messaging

systems), 371
browsers. See web browsers
buffer overflow vulnerabilities/attacks, 412–414,

414, 433
print resource on, 426

buffers:
cache buffers (in disk drives), 274
and concurrent threads, 89

hailperin-163001 book December 7, 2005 10:25

Index ! 447

storing, 100
See also bounded buffers

bugs: in synchronization, 74, 114–115
bursts of processor time: and scheduling priority, 48
busy waiting, 41
Byers, J. W., 368

C
C API. See POSIX API
C-lists, 242–243
cache buffers (in disk drives), 274
cache coherence protocols, 46, 84–85
cache memories (caches):

bypassing when zero filling, 179; print resource
on, 218

full associativity, 204
reduced performance in, 45–46
set-associative caches, 204
and throughput-oriented scheduling, 44–46

cache misses, 205
placement policy and, 204–205

cache-conscious spinlocks, 84–85
callee saves, 432, 433
caller saves, 433
calls. See procedure activations
canonical names (domain names), 336
CAP protection system: print resource on,

267
capabilities (of processes), 221, 241–245

access control lists as used with, 251–252
and the access matrix, 244
addressable. See addressable capabilities
C-lists, 242–243
of child processes, 223
file execution and, 228
forgery prevention, 243–244
irrevocable capabilities, 245, 252
Microsoft Windows approach, 242
POSIX approach, 242, 245
print resource on, 267
selective granting of, 244–245
selective revocation of, 245
sending and receiving, 242–243
sets (storage area), 242, 244; C-lists,

242–243
capability forgery: preventing, 243–244
capacity misses (cache misses): conflict misses

vs., 205
Cartesian product of compartment partial orders,

408, 409, 423
CAs (Certification Authorities), 387
certificates (of servers), 387

web service use of, 387–388
Certification Authorities (CAs), 387
Chase, Jeffery S., 267
chdir procedure (POSIX API), 276
checkpointing, 151

checkpoints (for persistent storage): and consistent
states, 151

Chen, Peter M., 322
Chen, Shuo, 426
Cheswick, William R., 426
child procedure, 22
child processes:

address space, 223
creating, 222–223; to run different programs,

224–225
as parent process copies, 223
waiting for, 228

child threads: spawning of, 22
childThread object, 22
chooseNextThread procedure, 32
CIFS (Common Internet File System), 330,

338–339
classification levels of information, 407–409

compartment–classification level partial orders,
408, 408; Cartesian product, 408, 409, 423

total order, 408, 408
cleanup code (for failure handlers): sharing,

162–163
client authentication. See authentication

(of users)
Client class, 344
client-side stream sockets: life cycle (through

states), 341
clients and servers:

in messaging systems, 371, 371–372,
372

in RPC systems, 374–375, 374, 375
clock replacement, 211
close procedure (POSIX API), 275
closed state (of sockets), 342
closing files, 275
clustered page tables, 219
clustered paging, 203–204

overriding, 217
CNAME records, 336
Codd, E. F., 38q, 70q
Coffman, E. G., 122
columns (of tables), 270
Comer, Douglas, 323
command-line arguments, 226
commit actions (operations), 125, 129

delaying, 136
durability and, 150
redo logs and, 151

Common Criteria (ISO 15408), 415, 416
print resources on, 426, 427
website resource on, 426

Common Internet File System (CIFS),
338–339

Common Object Request Broker Architecture
(CORBA), 376

communication middleware systems, 369–382

hailperin-163001 book December 7, 2005 10:25

448 ! Index

compartments of information, 407–409
partial orders, 408, 408; Cartesian product, 408,

409, 423
compensating transactions, 134–135
computations:

early terminology, 266
multiple computations on single computers, 2,

9–10. See also multiple threads
See also threads

computer systems:
Atlas computer, 217, 218
components, 44
hard-real-time systems, 54–56
housekeeping work, 26
isolation of machines exposed to attack, 360
multiprocessor system cache memories, 44–46
persistent storage integrity in system crashes

requirement, 13, 271
resource allocation, 48, 49, 62, 221
resource utilization, 24, 26–27, 44
response time, 47, 48, 67–68
responsiveness, 24–26, 27
security aspects (objectives), 16, 398
security issues. See under security
throughput, 44, 58; convoy phenomenon and,

109, 113
See also internets; middleware; networks;

operating systems; servers; storage
concurrency:

in message-queuing systems, 132–133
multiversion concurrency control (MVCC),

153–154
of transactions, 126, 151; increasing, 152
See also concurrent threads; concurrent

transactions
Concurrent Pascal (programming language), 122
concurrent threads, 20–21, 21

buffers and, 89
processor-intensive vs. disk-intensive activities,

26, 27, 58
reasons for using, 24–27
switching. See thread switching
See also thread interactions

concurrent transactions, 11, 126, 130
condition variables (with monitors), 73, 94–98

basic operations, 94
print resources on, 122
vs. semaphores, 98

confidential data writing security issue, 212–213
confidentiality (security objective), 16, 398
conflict misses (cache misses): vs. capacity

misses, 205
congestion (in TCP transmission): control

measures, 346–347, 347–348
connected state (of sockets), 342
connection of sockets to their partners, 340
consistency (of transactions), 125, 144

consistent states, 123, 125
checkpoints and, 151
monitors as in, 123

context switching, 33
See also process switching; thread switching

contiguous allocation problems (disk space), 285
contiguous allocation problems (memory),

174–175
virtual memory solution, 175–176

contingency planning: and security, 316–317
Control Program. See CP
convoy phenomenon, 87, 111–114

print resource on, 122
and throughput, 109, 113

convoys (of threads in wait queues), 112–113
cooperative multitasking (in thread switching), 33
coordinating transaction processing system

subsystems, 154–156
copy on write (COW):

address space copying, 223
message passing, 173, 174; print resources on,

218
copy_process procedure (Linux kernel), 163
copying address space, 223
copying files, 279–281
CORBA (Common Object Request Broker

Architecture), 376
Corbató, Fernando J., 18q
Courtois, P. J., 122
covert channels, 411

print resource on, 426
COW. See copy on write
CP (Control Program) (in z/VM), 267–268
CP-67, 268

print resource on, 268
cpmm program, 280–281
crashes. See system crashes
Creasy, R. J., 268
create table command (SQL), 127
CreateThread procedure (Win32 API), 37
credentials (of processes), 221, 257

checking, 252
of child processes, 223
file execution impact on, 228; from setuid

program files, 228, 238, 259
Microsoft Windows ACL example, 246
setuid program credential propagation, 228,

238, 259
Trojan horse vulnerabilities, 257–259

cryptographic file systems, 315
cryptographic hash functions: password

authentication with, 363, 364, 403–404
cryptographic techniques, 361–365

categories, 362
for preventing capability forgery, 244

cumulative acknowledgment of segment
transmissions, 346

hailperin-163001 book December 7, 2005 10:25

Index ! 449

current directory: leaving out of the search path,
and running programs in, 258

currentThread method (Java API), 161
cylinders (of disk tracks), 272

D
DAC (Discretionary Access Control) systems, 241

Trojan horse danger in, 258–259
Daggett, Marjorie Merwin, 18q
Daley, Robert C., 18q, 267
dangling links (in file systems), 308
data access mechanisms, 303–310

data structures for directories or indexes,
308–310

directories: vs. database indexes, 303–304. See
also directories

file linking, 301–303, 305–308
indexes, 270, 304–305; vs. file directories,

303–304
Data Encryption Standard (DES), 362
data link layer. See link layer
data location structures (metadata), 291–300

B-trees, 290, 291, 297–300
block mapping, 283, 291, 295
extent maps, 291, 295–297, 298
inodes, 291–293, 291; with indirect blocks, 292,

293–295, 293, 294, 295
data packets. See packets
data structures (in operating systems and

middleware), 13
for directories or indexes, 308–310
shared. See shared data structures
trie structure, 194
See also data location structures (metadata); files;

persistent objects; tables (in relational
databases)

data transmissions (TCP):
congestion control measures, 346–347,

347–348
redundant formats, 348, 348
segment transmission and acknowledgment

mechanisms, 345–346
data warehouses, 152
database indexes, 303

vs. file directories, 303–304
database systems (relational database systems), 7

deadlock detection and recovery in, 106, 107,
128–130, 131

separate system approach, 152
transactions in, 127–130
See also relational databases

databases. See relational databases
datagram sockets: life cycle (through states), 341
datagrams (network-layer data transmission

chunks), 340
DatagramSocket class (Java API), 341
deadline inheritance, 111

deadlocks (of threads), 11, 73, 73, 101–109
avoidance vs. prevention, 121–122
detection and recovery from: ex post facto,

105–106, 107, 128–130, 131; immediate,
106–109, 108

prevention through resource ordering, 104–105
print resources on, 121
the problem, 101–103, 128
self deadlock, 80
between transactions, 144

deallocate operation (stacks), 430, 431
debugging: in single address space systems, 235
decay usage schedulers, 59–62
decay usage scheduling, 52, 59–62

fixed-priority scheduling adjustments, 110
proportional-share scheduling via, 61–62, 71

declaring mutexes, 78
decoy systems (honeypots), 419
defense in depth principle, 261–262
delayed allocation technique, 289–290
deletion of files, 301–303, 306–307

as difficult, 323
as inadequate for security, 315

demand paging, 202–203
demand-driven file reading, 177
demand-driven program loading, 178
denial of service (DoS) attacks:

vulnerability to, 65–67, 157, 358
worms and, 412

Denning, Dorothy, 426(2)
Denning, Peter J., 218(2), 219, 426
Dennis, Jack B., 218, 266, 267(2)
DES (Data Encryption Standard), 362
descriptor tables, 242
descriptors (POSIX). See file descriptors
desktop environments, 5
destroying mutexes, 78, 79
deterministic execution (of transactions): vs.

serializable execution, 138
DFS (Distributed File System), 338
digital signatures, 364

message signature mechanism, 390
non-repudiation feature, 364, 390

digital trees, 194
Dijkstra, Edsger W., 121(2), 122(2)
dining philosophers problem, 103, 122

Java simulation, 119–120, 120
print resource on, 122

directories (file directories), 270, 303
data structures for, 308–310
vs. database indexes, 303–304
disk space allocation policies, 289
keys, 303–304
leaving the current directory out of the search

path, 258
permissions for, 250–251, 261
running programs in the current directory, 258

hailperin-163001 book December 7, 2005 10:25

450 ! Index

directories (cont.)
traversing, 251
working directory: changing, 276

directory trees, 309
dirty bits, 177–178, 211

print resource on, 218
dirty pages, 177

tracking of, 177–178
Discretionary Access Control (DAC) systems, 241

Trojan horse danger in, 258–259
disk access time:

aspects, 273–274
locality issues, 274, 287–288
performance issues, 272, 274
variance, 272

disk blocks, 283
extents, 284
groups, 288–289
indirect. See indirect blocks
size issues, 285, 286–287

disk drives, 272–274
components, 272, 273
mechanism, 272–273
request queuing and handling, 274–275

disk operation requests, 272, 274
queuing and handling of, 274–275

disk space:
allocation of. See disk space allocation
fragmentation of, 284–287

disk space allocation, 283–290
best-fit policies, 290
bitmap approaches, 288–289, 290
contiguous allocation problems, 285
delayed allocation technique, 289–290
directory and subdirectory placement

policies, 289
file placement policy, 289
first-fit policies, 290
fragmentation and, 284–287
locality and, 287–288
objectives, 284
observed behavior strategy, 288
policies and mechanisms, 288–290
print resource on, 323
write order strategy, 287–288

disk storage:
vs. memory (RAM), 179
paging to (substituting RAM for), 180

disk technology, 272–274
print resources on, 322

disk-intensive vs. processor-intensive thread
activities, 26, 27

maximizing throughput, 58
disks (of disk drives) (platters), 272
dispatching threads, 33, 43
distributed applications: middleware and, 15
Distributed File System (DFS), 338

distributed file systems, 331, 337–339
protocols, 338–339

DLLs (dynamic-link libraries): process use of,
171–172, 172

DNS. See Domain Name System
Domain Name System (DNS), 330, 331, 334–337

application protocol support, 331
as complicated, 336–337
information storage modes, 337

domain names (for internet addresses):
as aliases, 336
as analogous to pathnames, 335–336
relative and absolute names, 335
resource records, 336
translating into address numbers, 336
See also internet addresses

Dorward, Sean, 323
DoS attacks (denial of service attacks):

vulnerability to, 65–67, 157, 358
worms and, 412

dotted decimal format, 351
double indirect blocks, 294
down operation, 99
Druschel, Peter, 71
durability (of transactions), 125

and commit operations, 150
failure atomicity and, 148–149
issues, 147–148
in message-queuing systems, 131–132
in system crashes, 164
update storage, 150–151
write-ahead logging, 149–150

Dykes, Jim, 322
dynamic-link libraries (DLLs): process use of,

171–172, 172
dynamic-priority scheduling, 52, 56–62

testing adjustments, 69

E
EALs (Evaluation Assurance Levels), 415–416, 416
Earliest Deadline First (EDF) scheduling, 52, 56–57

deadline inheritance for, 111
ECN (Explicit Congestion Notification), 348
EDF scheduling. See Earliest Deadline First (EDF)

scheduling
ELOOP error code, 308
Elphick, M., 122
email delivery software: TOCTTOU race bugs in,

115, 122
email protocols, 332, 358
email worms, 258, 412
embedded systems: without operating systems, 3
encryption, 362
end-to-end principle (of Internet

communication), 330
NAT routing violation of, 355

endpoint addresses, 386

hailperin-163001 book December 7, 2005 10:25

Index ! 451

entity tags (ETags), 334
equivalence (of serializable executions/histories),

137, 139–141
print resources on, 164

equivalence-preserving swaps (of transaction
actions), 139–141, 142–143

illegal and legal swaps, 140
erasure coding, 348

print resource on, 368
error output, 276
Eswaran, K. P., 164
ESX Server VMM (VMware), 254, 254

print resource on, 267
ETags (entity tags), 334
ethereal tool, 367
Ethernet, 356
Evaluation Assurance Levels (EALs),

415–416, 416
ex post facto deadlock detection and recovery,

105–106, 107, 128–130, 131
exception potential in Java RMI, 377–378
excess memory demand: swapping solution, 208
exchange operations: atomicity, 83–84
exclusive access. See mutual exclusion
exec family procedures, 225–227

protection mechanism interaction, 228
execer program, 226
execl procedure (POSIX API), 225–226
execlp procedure (POSIX API), 226, 227

Trojan Horse danger, 258
execute permission. See x permission
execution (of threads): status information, 30
execution (of transactions):

deterministic execution, 138
equivalence of serializable execution, 137; print

resources on, 164
histories. See system histories (transaction

histories)
serial and serializable execution, 137

execve procedure (POSIX API), 225
exit procedure (POSIX API), 230
Explicit Congestion Notification

(ECN), 348
Explorer (Microsoft), 5
ext3fs file system (Linux), 288–289, 291, 312
Extensible Markup Language (XML): and web

services, 383, 384
extent maps, 291, 295–297

B-trees used as, 298
extent descriptions, 295–296
speed, 296

extents (of disk blocks), 284
extent map descriptions of, 295–296

external fragmentation:
of disk space, 285–287
of memory, 175, 175
print resource on, 322

F
Fabry, R. S., 267
failure atomicity (of transactions), 124, 144–145

ad hoc programming difficulties, 145, 146, 157
and durability, 148–149
in system crashes, 164
undo logging (transaction processing system),

145–147
failure handlers: cleanup code sharing, 162–163
failures (of transactions), 124, 125, 145

testing complications, 145, 146
fair-share scheduling, 49–50

proportional-share scheduling vs., 50
fetch policy (page frame assignment timing),

202–204
fibers (user-level threads), 21, 232, 233, 233

print resource on, 71
FIFO (first in, first out) policy:

page replacement, 209–210, 210, 211; print
resources on, 219

thread scheduling, 53–54
file access permissions. See permissions
file APIs, 13

categories, 13
to hidden mechanisms in operating systems, 13

file descriptors (descriptors), 242, 252,
275–279

obtaining, 275
standard, 276

file linking, 301–303, 305–308
file location structures. See data location structures

(metadata)
file locks, 92
file name argument (open procedure), 276
file names:

adding to/removing from files, 306–307
as metadata, 291, 301–303
multiple names for single files, 306, 307; as

symbolic links, 307–308
file offsets: setting, 283
file systems, 12–13, 135

block mapping, 283, 291, 295
cryptographic systems, 315
data access structures, 303–310
data location structures (metadata), 291–300
disk space allocation policies and mechanisms,

288–290
distributed file systems, 331, 337–339
historical systems, 323
journaled file systems, 135–136, 311, 312,

313
links in: hard links, 307, 308; symbolic links

(soft links), 307–308, 307, 336
log-structured file systems (LFSs), 313, 323
polymorphic implementations, 313–314
print resources on, 322
See also ext3fs; HFS Plus; NTFS; XFS

hailperin-163001 book December 7, 2005 10:25

452 ! Index

file-processes program, 277
files, 269–270

access control lists (ACLs) for, 250
access permissions. See permissions
adding names to, 306
attributes indexed, 305, 308
closing, 275
copying, 279–281
deletion of, 301–303, 306–307; as difficult, 323;

as inadequate for security, 315
descriptors, 242, 252, 275–279
disk space allocation policies, 289
with holes (sparse files), 295
locating with indexes, 304–305
location structures. See data location structures

(metadata)
mapping of into virtual memory, 279–281
metadata attribute operations, 278–279
mode number, 301
names. See file names
offsets, 283
opening, 251–252, 275, 276–278, 282
POSIX API, 275–283, 306, 307
reading, 279–283; sequentially, 282–283;

at specified positions, 281–282
as referenced (in POSIX), 275
removing names from, 306–307
size metadata, 301
sparse files, 295
time stamps, 301
user groups (owners), 249–250
versioning of, 323; print resources on, 323;

snapshots, 312
writing, 279–283; sequentially, 282–283; at

specified positions, 281–282
firewalls, 359–360, 361

misconfiguration of, 360; print resource on,
368

first in, first out (FIFO) policy:
page replacement, 209–210, 210, 211; print

resources on, 219
thread scheduling, 53–54

first-fit policies (disk space allocation),
290

fixed-priority scheduling, 52, 52–56
avoidance of, 66, 110
decay usage adjustments to, 110
hard-real-time systems use of, 54
need for, 110
as not viable in open, general-purpose

environments, 54
numerical priorities, 52–54
as off-limits in typical systems, 66
priority inheritance and, 110–111
rate-monotonic scheduling, 54, 56; testing

real-time schedules, 54–56
theorems on, 54–56, 57

forgery: preventing capability forgery,
243–244

fork procedure (POSIX API), 222–223, 224,
224–225, 227

if statement with, 223
programming example, 265

forker program, 224
forking off child processes, 222–223, 224–225

access matrix changes from, 238
to run different programs, 224–225

forward error correction, 348
print resource on, 368

forward-mapped page tables. See multilevel page
tables

forwarding tables (of routers), 352
Fotheringham, John, 218
fragmentation (of disk space), 284–287

extent-oriented definition, 284
external fragmentation, 285–287
internal fragmentation, 284–285
print resource on, 322

fragmentation (of memory): external
fragmentation, 175, 175

frames (link-layer data transmission
chunks), 355

free page frames:
inventory water marks, 205–206
working sets in excess of, 208

free page list, 206, 207
freeing page frames in advance of demand,

206
fstat procedure (POSIX API), 278–279
fstater program, 278
fsync procedure (POSIX API), 310
ftruncate procedure (POSIX API), 279
full associativity (of caches), 204
functional requirements (in PPs and STs), 415

G
Ganger, Gregory R., 323
Gantt charts, 55

real-time schedule testing, 54–56
response time illustration, 67–68

Garfinkel, Simson, 426
gateway routers, 351
general access matrix model, 240–241
getpid procedure (POSIX API), 225, 226
gift programs: Trojan horse danger, 258
global replacement (of pages), 208
Goodman, Nathan, 164
GoogleSearch security limitation, 388–389
Gray, Jim, 154, 163(2), 164(2)
greater than sign (>): redirect standard output

symbol, 276
greatest fixed-point solution theorem, 253
Güntsch, Fritz-Rudolf, 217, 218
Gutmann, Peter, 323

hailperin-163001 book December 7, 2005 10:25

Index ! 453

H
Habermann, A. N., 121–122
hackers: terminology, 401
Haerder, Theo, 125, 163
handle tables, 242
handles (Microsoft Windows), 242
hard disks. See disk drives
hard links (in file systems), 307, 308
hard-real-time system scheduling, 54

print resource on, 71
testing real-time schedules, 54–56

Härder, Theo, 125, 163
hardware interrupts, 34

timer interrupts, 41–42, 43
Harrison, Michael A., 240, 267
hash buckets, 195, 196, 197
hash collisions, 195

handling mechanism, 196–197
hash function, 195
hash tables, 309
Hashed Message Authentication Codes

(HMACs), 363, 364
hashed page tables, 185, 194–197, 195

address mapping in, 196, 196
collision-handling mechanism, 196–197
creation of, 218–219
entry storage problem, 219
and inverted page tables, 218
and multilevel page tables, 197
page number tags, 185, 196
protection keys (in entries), 236

Havender, J. W., 121
Hays, Jim, 219
head switch time, 273
head switches, 272–273
heads (of disk drives), 272
Hellerstein, Joseph L., 71
Heymans, F., 122
HFS Plus file system (Mac OS X), 135, 312

B-tree, 310
extent maps, 297
symbolic links, 308

hierarchical page tables. See multilevel page tables
high-water mark (free frame inventory), 205
Hill, Mark D., 219
Hilton, Paris: user authentication failure involving:

print resources on, 427
histories. See system histories (transaction histories)
Hoare, C. A. R., 96, 122
Hohpe, Gregor, 394
holes: files with (sparse files), 295
Holt, Richard C., 122
honeypots, 419
housekeeping work (of computers): concurrent

threads and, 26
HTTP (Hypertext Transfer Protocol), 327, 330,

332, 332

request-response format, 332
web communication example, 332–334
web services use of, 384–386

Huck, Jerry, 219
Hydra operating system: print resource on, 267
Hypertext Transfer Protocol. See HTTP

I
I/O (input/output):

POSIX procedures, 279–283
security issues, 158–159
standard library procedures

recommendation, 283
i386 architecture. See IA-32 architecture
IA-32 architecture (i386/x86 architecture):

multilevel page tables, 190–194, 191, 192
Physical Address Extension (PAE) mode, 214
print resource on, 218
protection scheme, 232
return address storage approach, 432
segmentation support, 197; paging–segmentation

combination, 198–199, 199
software/hardware interface, 184
thread-switching code, 31–32
underutilized features, 267

IBM DB2: read committed mode, 152
IBM iSeries (System/38–AS/400), 237

print resource on, 267
IBM z/VM, 254
idempotency (of the undo operation), 149
IDSes (intrusion detection systems), 360–361, 418
if statement: with fork procedure, 223
IIOP (Internet Inter-Orb Protocol), 376
illegal address notion, 169
IMAP (Internet Message Access Protocol), 330, 332
immediate deadlock detection, 106–109, 108
importance (of tasks/threads), 48, 49
importance-oriented scheduling, 49, 51, 58
impurities (of transactions), 142

removing, 142–144
inactivity periods (of processes), 180
inconsistency of variable values, 75–76

medical consequences, 76
inconsistent states: in transactions (temporary),

144–145
independent allocation (of memory) goal, 170
indexes, 270

data structures for, 308–310
database indexes vs. file directories, 303–304
file attributes indexed, 305, 308
keys, 303–304
locating files with, 304–305
unique indexes, 304

indirect blocks, 293
inodes with, 292, 293–295, 293, 294; as block

maps, 295; tree structure, 295
read requirements, 296

hailperin-163001 book December 7, 2005 10:25

454 ! Index

information classification levels. See classification
levels of information

information compartments. See compartments of
information

information-flow control, 407
Bell-LaPadula model, 409–410
lattice model: print resource on, 426
in MLS systems, 407–410

initializing mutexes, 78
inodes, 291–293, 291

with indirect blocks, 292, 293–295, 293,
294; as block maps, 295; tree
structure, 295

metadata categories, 292, 292, 293, 301
numbers contained in, 301
selecting block groups for a new inode, 320

input overwrite (buffer overflow)
vulnerabilities/attacks, 412–414, 433

input/output. See I/O (input/output)
instruction pointers (IP registers), 30, 31
instructions (in code): in virtual addresses, 235
integrity (security objective), 16, 398

persistent storage integrity in system crashes
requirement, 13, 271

See also metadata integrity
integrity monitoring, 418
Intel architecture. See IA-32 architecture; Itanium

architecture
interactions between computations. See thread

interactions
interfaces:

APIs. See APIs (Application Programming
Interfaces)

software/hardware interface, 182–185
user interface design: and security, 261
web service interface specification standard

(WSDL), 383–384
See also specific Java interfaces

interleaving:
of threads, 72, 76
of transaction histories, 138

internal fragmentation:
of disk space, 284–285
print resource on, 322

Internet: end-to-end principle, 330
internet addresses, 334

design problem, 350
format, 326, 350, 351; cost and benefit, 327
NAT rewriting of, 353, 354
prefixes, 350
See also domain names; network addresses (MAC

addresses)
Internet Inter-Orb Protocol (IIOP), 376
Internet Message Access Protocol (IMAP), 330, 332
Internet Protocol. See IP
internets, 326

security issues, 356–365

interrupt handler, 34, 41–42
interrupts, 231

hardware interrupts, 34; timer interrupts,
41–42, 43

MMU interrupts. See page faults
intrusion detection systems (IDSes), 360–361, 418
inumbers, 292
invariants (invariant properties), 75, 123

spanning multiple objects, 123–124
inverted page tables, 218
I/O. See I/O (input/output) (at "i-/-o", above)
IP (Internet Protocol), 329, 330, 349–351

IPv6 vs. IPv4, 350
IP headers, 349–350
IP registers (instruction pointers), 30, 31
ipconfig command, 368
IPsec, 350

VPN support, 359
irrevocable capabilities, 245, 252

security issue, 245
iSeries (IBM), 237

capabilities storage approach, 242
ISO 15408 (Common Criteria), 415, 416
isolating threads of different processes, 11
isolation (of machines exposed to attack),

360
isolation (of transactions), 11, 124, 125, 126

print resources on, 164
reduced, 152–153
security issues, 158
snapshot isolation, 153–154

Itanium architecture:
page table support, 187, 194, 197
print resource on, 218, 267
single address space system, 235

J
J2EE (Java 2 Platform, Enterprise Edition), 7

JAX-RPC, 386–387, 394
JMS, 370, 394
website resource on, 163, 394

Java (programming language):
limitations, 98
monitor approximation, 81–82, 83
website resource on, 394

Java 2 Platform. See J2EE
Java API, 22, 122

website resource on, 38, 122
Java API for XML-Based RPC. See JAX-RPC
Java Message Service (JMS), 370

website resource on, 394
Java objects: protecting from each other within

single processes, 252–253
Java RMI:

exception potential, 377–378
publish/subscribe messaging example, 377–382
website resource on, 394

hailperin-163001 book December 7, 2005 10:25

Index ! 455

Java Virtual Machine. See JVM
JAX-RPC (Java API for XML-Based RPC),

386–387
website resource on, 394

Jessen, Eike, 217, 218
JFS file system (Linux), 135
JMS (Java Message Service), 370

website resource on, 394
jobs (in batch processing), 47–48
journaling strategy (journaled file systems),

135–136, 311, 312, 313
journals. See logs
Joy, William, 219
JVM (Java Virtual Machine), 252–253

type system, 244
JVM verifier, 253

dataflow analysis theorem, 253, 264
print resource on, 267

K
Kempster, Tim, 164
kernel (of operating systems), 5

print resource on, 368
kernel mode (system mode) (of processors), 231
kernel threads, 232–233, 232
kernel-supported user threads (native threads),

232–233, 232
Kessler, R. E., 219
key pair cryptographic techniques, 362
key security practices, 419–421
keyloggers, 402
keys: in directories vs. indexes, 303–304
Khalidi, Y. A., 219
kill procedure (POSIX API), 230
Knuth, Donald Ervin, 323
Krebs, Brian, 427
Kurose, James F., 368

L
label-switching routers, 352
Lampson, Butler W., 163, 426
Landwehr, Carl E., 426
LANs (local area networks), 326
launcher program, 227
layers. See networking protocol layers
Layland, James W., 54–56, 57, 71
leaf/nonleaf procedure activations, 432
Least Recently Used (LRU) replacement policy,

209–211, 210
print resources on, 219

Lehoczky, John P., 122
less than sign (<): redirect standard input

symbol, 276
Leveson, Nancy G., 121
Levy, Henry, 219
LFSs (log-structured file systems), 313, 323

print resource on, 323

lifetimes (of threads), 20
Linden, Theodore A., 267
Lindholm, Tim, 267
linear lists (unordered), 308–309
linear page tables, 185–190

address mapping in, 186, 186, 188–189, 189
entry storage problem, 186–187, 219
and multilevel page tables, 188, 190
process switching and, 185
recursion problem, 188
valid/access control bits (in entries), 185–186,

186, 237
virtual memory storage solution, 188–190

link layer (in networking systems), 14, 329, 330,
355–356

data transmission chunks (frames), 355
security issues, 359

link procedure (POSIX API), 306
linked lists: hash collision-handling in, 196–197
links (in file systems):

hard links, 307, 308
symbolic links (soft links), 307–308, 307, 336

links (in networks), 325
shared links, 355–356

Linux:
clustered paging (read around), 203–204;

overriding, 217
demand paging, 203
file systems, 135. See also ext3fs; XFS
immediate deadlock detection in, 109
kernel, 5
runqueue structure, 104
scheduler, 63–65, 71
and segmentation, 201
source code, 38, 104, 122, 163
“swapping” misnomer, 208
vmstat program, 38

Liskov, Barbara, 164
listening state (of sockets), 342
Lists: storing buffers with, 100
Liu, C. L., 54–56, 57, 71
ln command, 308
local area networks (LANs), 326

technology, 356
local arrays: buffer overflow vulnerabilities/attacks,

412–414, 414, 433
local replacement (of pages), 207, 208
local variables: procedure activation value storage

options, 432–433
locality: of disk space allocation: access time issues,

274, 287–288
See also spatial locality; temporal locality

locating files with indexes, 304–305
locating remote objects, 376, 377, 378–379, 379
lock actions (operations):

assumptions regarding, 139
notation for, 137–138

hailperin-163001 book December 7, 2005 10:25

456 ! Index

lock actions (cont.)
transaction processing system rules, 141–142
See also locking mutexes; two-phase locking

locking mutexes, 77–78, 77
basic spinlocks, 84, 84, 85
cache-conscious spinlocks, 85, 85
queuing mutexes, 87, 88
recursive locking, 80

locking pages into memory, 212–213
locks (on shared data structures):

file locks, 92
operational and functional assumptions

regarding, 139
predicate locks, 164
See also deadlocks (of threads); monitors;

mutexes; readers/writers locks; spinlocks
log-structured file systems (LFSs), 313, 323

print resource on, 323
logging:

redo logging, 150–151
undo logging, 145–147
write-ahead logging, 149–150

logging devices (append only), 418
logging in using passwords: weaknesses, 401–402
login forms (screens): sending policy, 403
login monitoring, 418
login password storing, 212
logs (journals), 135

combined log of undo logs, 147, 149
See also redo logs; undo logs

looped links (in file systems), 308
lottery scheduling, 62–63, 66–67

print resource on, 71
low-water mark (free frame inventory), 205
LRU (Least Recently Used) replacement policy,

209–211, 210
print resources on, 219

lseek procedure (POSIX API), 283
Luby, M., 368

M
MAC addresses (Media Access Control

addresses), 356
Mac OS X:

disk space allocation strategy, 288
file system. See HFS Plus
immediate deadlock detection in, 109
scheduler, 59–60, 60, 61, 71
and segmentation, 201
Spotlight search feature, 303, 304–305
UNIX base, 308

MAC systems (Mandatory Access Control systems),
241, 258–259

with ACLs, 410
Bell-LaPadula model, 409–411
MLS systems, 407–410
SELinux system, 411

MacKinnon, R. A., 268
MACs (Message Authentication Codes), 362

computing techniques, 363, 364
digital signatures, 364
Hashed Message Authentication Codes, 363, 364

madvise procedure (POSIX API), 203, 215, 217
major page faults: converting to minor page faults,

203–204
malware, 411–414
Mandatory Access Control systems. See MAC

systems
mapping:

of addresses. See address mapping (translation)
of file blocks, 283, 291–295, 295
of files into virtual memory, 279–281

mapping function, 168
See also address-mapping table; page tables;

segment table; TLBs (translation lookaside
buffers)

maps:
block maps, 295
extent maps, 291, 295–297
See also address-mapping table; page tables

masks (of Internet address numbers), 351
Mattson, R., 219
McCreight, E., 299, 323
McWilliams, Brian, 427
MD5 (Message Digest 5), 364
Media Access Control (MAC) addresses, 356
median key (in B-trees), 299
memcpy procedure (POSIX API), 279–280
memory (main memory) (RAM):

address space. See address space (virtual address
space)

address use, 166–167, 167
addresses. See addresses; physical addresses;

virtual addresses
cache memories, 44–46
contiguous allocation problems, 174–175; virtual

memory solution, 175–176
vs. disk storage, 179
excess demand: swapping solution, 208
external fragmentation of, 175, 175
independent allocation goal, 170
locking pages into, 212–213
protecting. See protection (memory protection)
saving and restoring registers into and from

(push and pop operations), 29, 30–31, 31, 429,
432–433

shared. See shared memory
sparse address space allocation, 176–177
stacks as represented in, 430–431
substituting for disk storage, 180
virtual. See virtual memory
as volatile, 125
zero filling of. See zero filling (of memory)
See also storage

hailperin-163001 book December 7, 2005 10:25

Index ! 457

memory management unit. See MMU
memory protection. See protection (memory

protection)
memory word tag bits: for preventing capability

forgery, 243
Message Authentication Codes. See MACs
message authentication feature (TCP),

358
Message Digest 5 (MD5), 364
message digest functions (cryptographic hash

functions), 363, 364
message passing, 173, 174

See also messaging
message queuing (and message-queuing systems),

130–131, 370, 371, 371
concurrency in multi-server systems,

132–133
durability in, 131–132
transaction processing, 15, 130–135
workflow systems, 133–135, 163–164

message-oriented middleware (MOM). See
messaging (and messaging systems)

MessageRecipient interface, 378, 378
messaging (and messaging systems), 15, 369,

370–373
ACL use with, 387
message passing, 173, 174
message queuing. See message queuing
message selection, 372–373
print resource on, 394
publish/subscribe messaging, 370–371, 371,

372–373
vs. RPC, 371–372
as synchronization, 74

metadata (metadata attributes), 13, 135,
290–303

access control metadata, 300–301
for data location. See data location structures

(metadata)
file attributes indexed, 305, 308
file names as, 291, 301–303
file operations on, 278–279
file size, 301
inode metadata categories, 292, 292, 293,

301
integrity. See metadata integrity
page table–metadata analogy, 290–291,

294–295
time stamps (for files), 301
transactions and, 136

metadata integrity:
maintenance strategies, 311–313
system crashes and, 310
violations of, 310–311

methods: synchronized keyword for public
methods, 81, 82, 94

See also specific methods

Meyer, R. A., 268
microshell program, 229
Microsoft Windows:

capabilities storage approach, 242
clustered paging (read around), 203
disk space allocation strategy (XP), 288
file system. See NTFS
handles, 242
page lists, 206–207, 207
print resource on, 218
replacement policy, 208
scheduler, 59, 60–61, 71; print resource on, 71
and segmentation, 201

middleware, 6–7, 6
and application programs, 6–7; distributed

applications, 15
communication middleware systems, 369–382
and distributed applications, 15
example systems, 7
indexes as, 304–305
marketing definition, 7
message-queuing systems, 130–135
operating system–middleware differences, 6
persistent storage forms. See persistent objects;

tables (in relational databases)
print resource on, 18
protection job, 252
See also database systems

minor page faults: converting major page faults
to, 203–204

MIPS architecture:
page table research tool, 197
return address storage approach, 432
software/hardware interface, 185

Mizenmacher, M., 368
mlock procedure (POSIX API), 213
mlockall procedure (POSIX API), 213
MLS (Multi-Level Security) systems, 407–410
mmap procedure (POSIX API), 279, 279–281, 282

problems using, 281–282
MMU (memory management unit), 167, 168

address mapping. See address mapping
(translation)

page table entry loading into TLBs, 184
page table walker, 184
recent address translation storage. See TLBs

(translation lookaside buffers)
MMU interrupts. See page faults
modified page list, 206, 207
modified page writer thread, 206
modularization (modularity):

concurrent threads and, 24
transaction failure testing and, 145

Mogul, Jeffery C., 71
MOM (message-oriented middleware). See

messaging (and messaging systems)
monitor keyword, 81

hailperin-163001 book December 7, 2005 10:25

458 ! Index

monitoring: security monitoring, 398, 417–419
monitors, 73, 81–82

with condition variables, 73, 94–98; print
resources on, 122; vs. semaphores, 98

as in consistent states, 123
Java approximation of, 81–82, 83
tree monitors, 126

MPLS (Multiprotocol Label Switching), 352
MQSeries (IBM), 370
Multi-Level Security (MLS) systems, 407–410
multicasts, 325
Multics system, 267(2), 323

paging–segmentation combination,
199–200, 200

print resources on, 218, 267, 323
multiforker program, 265
multilevel feedback queue schedulers, 61

print resource on, 71
multilevel page tables, 190–194

entry storage problem, 219
four-level tables, 194
and hashed page tables, 197
IA-32 paged address mapping, 191–193,

192
and linear page tables, 188, 190
page directory, 191, 192
process switching and, 185
two-level tables, 190–194, 191

multiple address space systems, 234–235
advantages, 169, 170–171, 234
disadvantages, 171, 234–235

multiple computations on single computers,
2, 9–10

See also multiple threads
multiple password systems, 404–405

print resource on, 426
multiple threads, 19–21, 20, 21

sequential threads, 21
See also concurrent threads; thread interactions

multiple-threaded programs, 20
simple examples, 22–23, 23

multiple-threaded systems: waiting mechanism,
41–42, 42

multiple-threaded web servers, 25
multiplexing, 328, 339

transport protocol for, 339
multiprocessor systems:

cache memories in, 44–46
page frames in, 204

Multiprotocol Label Switching (MPLS), 352
multiserver systems: for message-queuing systems,

132–133, 132
multithreading. See thread switching
multiversion concurrency control (MVCC),

153–154
mutexes, 73, 77–80

basic spinlocks, 83–84, 84

cache-conscious spinlocks, 84–85
contention over, 111
declaring and initializing, 78
destroying, 78, 79
locking, 77–78, 77; queuing mutexes, 87, 88;

recursive locking, 80; spinlocks, 84, 84, 85, 85
more efficient versions, 82–88
OOP-structured models. See monitors
programming examples, 78–79, 79, 113–114, 113
queuing mutexes, 86–87
vs. readers/writers locks, 92
recursive mutexes, 80, 96
semaphores as, 99
spinlocks, 83–85; vs. queuing mutexes, 86
states, 77
types, 80, 83
unlocking, 77–78, 77; queuing mutexes, 87, 87,

88; spinlocks, 84, 84
wait queue dump version, 113–114, 113

mutual authentication, 389
mutual exclusion (of threads), 73, 123

with load and store instructions, 121
with mutexes and monitors, 76–88
need for, 74–76
print resource on, 121

mutual exclusion locks. See mutexes
MVCC (multiversion concurrency control),

153–154

N
name servers, 336, 337
NAT (Network Address Translation) technology,

352–353
routers, 353, 354, 360
routing, 353–355

NAT routers, 353, 354, 360
NAT routing, 353–355

problems and benefits, 355
native threads (kernel-supported user threads),

232–233, 232
Need-To-Know security principle, 410
nesting of procedure activations, 432
Network Address Translation technology. See NAT
network addresses (MAC addresses), 356

See also internet addresses
Network File System (NFS), 338–339, 367

ONC RPC and, 376
network layer (in networking systems), 14, 329,

330, 349–355
data transmission chunks (datagrams), 340
security problem and enhancement, 358–359

networking, 324–368
print resource on, 368
security issues, 356–365
vulnerabilities, 357
See also internets; networking protocol layers;

networking protocols; networks

hailperin-163001 book December 7, 2005 10:25

Index ! 459

networking protocol layers (protocol layers), 14–15,
327–330, 330

application layer, 332–339
link layer, 355–356
network layer, 349–355
physical layer, 355–356
security issues, 357–359
transport layer, 339–349

networking protocols, 327–330, 329
application protocols, 328, 331–332
ARP (Address Resolution Protocol), 356
CIFS (Common Internet File System), 330,

338–339
distributed file system protocols, 338–339
DNS (Domain Name System), 330, 331, 334–337
email protocols, 332, 358
HTTP (Hypertext Transfer Protocol), 327, 330,

332, 332–334, 384–386
IMAP (Internet Message Access Protocol),

330, 332
IP (Internet Protocol), 329, 330, 349–351
MPLS (Multiprotocol Label Switching), 352
NFS (Network File System), 330, 338–339,

367, 376
POP3 (Post Office Protocol–Version 3), 330, 332
print resource on, 368
SCTP (Stream Control Transmission Protocol),

330, 349
SMTP (Simple Mail Transfer Protocol), 330, 332
software layers responsible for, 331
SSL (Secure Sockets Layer), 358
TCP (Transport Control Protocol). See TCP
transport protocols, 328, 331, 349
UDP (User Datagram Protocol), 339
website resource on, 368

networks, 325
addresses, 356
links in, 325; shared links, 355–356
technologies, 356
types, 326, 359
See also internets

Newcomer, Eric, 163
next pointer, 30
NFS (Network File System), 330, 338–339, 367

ONC RPC and, 376
nice command, 70
niceness parameter (for scheduling), 51

in the Linux scheduler, 63, 64
non-portable APIs, 22
non-repudiation feature (of digital signatures), 364,

390
nonrepeatable reads, 153, 154
nonserializable histories (of transaction

executions), 139
Northcutt, Stephen, 426
notify method (Java API), 96

vs. notifyAll method, 97

notify operation (condition variables), 94,
96–97

reducing notification, 97
notifyAll method (Java API), 94, 95, 96, 97

vs. notify method, 97
NTFS file system (Microsoft), 135, 312

ACL storage, 301
extent map system, 297, 323

NULL pointer, 226
numerical scheduling priorities, 52–54

tie-breaking strategies, 53–54

O
O_CREAT argument, 276–278
O’Neil, Patrick E., 164
O_RDONLY argument, 276
O_RDWR argument, 276
O_TRUNC argument, 278
O_WRONLY argument, 276
OASIS web site, 394
objectives:

of this book, 7–9
of disk space allocation, 284
of security, 16, 398

objects, 237
persistent objects, 12, 269, 270
protecting from each other: in whole operating

systems, 253–257; within single processes,
252–253

remote. See remote objects
shared object virtual address names, 168, 235
subjects as, 237
See also stored objects/entities

observed behavior disk space allocation
strategy, 288

ONC RPC (Open Network Computing RPC),
376

open file descriptors, 252
Open Network Computing (ONC) RPC, 376
open procedure (POSIX API), 251–252, 275

arguments, 251, 276–278
opening files, 251–252, 275, 276–278, 282
operating systems, 2–5, 4

application process–operating system boundary,
12, 232, 233

and application programs, 4–5
common perception of, 4–5
embedded systems without, 3
file systems. See file systems
hidden mechanism APIs, 13
historical definition, 4
Hydra system: print resource on, 267
kernel, 5; print resource on, 368
memory access needed, 231
middleware–operating system differences, 6
networking and transport layer services, 14,

328–329

hailperin-163001 book December 7, 2005 10:25

460 ! Index

operating systems (cont.)
persistent storage form. See file systems
private memory, 231
and protection, 231
protection schemes, 231–232, 234–237
services, 2–3, 3, 4–5; networking and transport

layer services, 14, 328–329
transfers to, 231
user-interface programs in, 5
VMS system, 208
vulnerabilities, 15–16
See also Linux; Mac OS X; Microsoft Windows;

middleware; Multics system; UNIX-family
operating systems

operations (on objects), 237
See also specific operations, procedures, and methods

OPT (optimal replacement) policy, 209, 210
print resources on, 219

optimal replacement (OPT) policy,
209, 210

print resources on, 219
Oracle database system:

deadlock detection and recovery in, 106, 107,
128–130, 131

multiversion concurrency control, 153
website resource on, 163

Orlov, Grigoriy, 289, 323
website resource on, 323

OSI (Open Systems Interconnection) reference
model, 329, 330

Ousterhout, John K., 323
outgoing pointer, 30
overview of this book, xvii–xviii, 1

P
P (down) operation, 99
packets (data transmission chunks):

communication requirements, 340
datagrams, 340
frames, 355
headers (IP headers), 349–350
incorrect source address problem, 358–359
IPsec encryption, 359
segments, 345–346

PAE (Physical Address Extension) mode, 214
page coloring, 205

print resource on, 219
page directory (in multilevel page tables),

191, 192
page faults (MMU interrupts), 169, 231

and demand paging, 203
file page access and, 177
prepaging and, 203–204
soft page faults, 205

page frames (of physical addresses), 169
assignment (to pages) (paging), 197,

202–204, 205

assignment selection (placement policy),
204–205

assignment timing (fetch policy), 202–204
free frame inventory water marks,

205–206
freeing in advance of demand, 206
in multiprocessor systems, 204
size, 180–181
temporary state inventories, 206–207
zero filling of. See zero filling (of memory)

page lists (Microsoft Windows), 206–207, 207
page table walker, 184

software/hardware interfaces for architectures
with/without, 184–185

page tables, 168–169
clustered page tables, 219
data structure alternatives, 181–182
entry loading into TLBs, 184
future systems research, 197
granularity, 180
hashed. See hashed page tables
inverted page tables, 218
linear. See linear page tables
metadata structure–page table analogy, 290–291,

294–295
multilevel. See multilevel page tables
operating systems and, 169
performance vs. TLB performance, 184
process switching and, 185
protection settings (in entries), 232
reference bits (in entries), 211; print resource

on, 218
use of, 182

pages (of virtual addresses), 169
active pages, 180
dirty bits, 177–178, 211; print resource on, 218
dirty pages, 177; tracking of, 177–178
global replacement, 208
local replacement, 207
locking into memory, 212–213
page frame assignment to (paging), 197,

202–204, 205
sending to disk, 180. See also replacement policy
size, 180, 183, 184; print resource on, 218

paging (page frame assignment):
demand paging, 202–203
prepaging, 202, 203–204
print resources on, 217, 218
reducing cache conflicts, 205
timing (fetch policy), 202–204
virtual memory as, 197

paging (to disk), 180
Pang, Ruoming, 368
parent processes:

forking off child processes, 222–223, 224–225;
access matrix changes from, 238; to run
different programs, 224–225

hailperin-163001 book December 7, 2005 10:25

Index ! 461

parent threads: spawning of child threads, 22
Parmelee, R. P., 268
Parnas, D. L., 122
partially ordered sets (of classification and

compartment labels), 408, 408
password authentication:

with cryptographic hash functions, 363, 364,
403–404

weaknesses, 388, 401–402
password wallet systems, 405
password-changing program, 212, 229
passwords:

authentication of. See password authentication
checking without storing, 403–404
multiple password systems, 404–405; print

resource on, 426
theft, 402; via spoofing and phishing, 402–403
token use with, 405

pathname delimiter (/), 276
pathnames, 275

domain names as analogous to, 335–336
relative and absolute names, 335

PCs (program counters), 30
per-thread stacks, 30

saving registers in, 30–31, 31
performance:

disk access time issues, 274
scheduling goals, 51
TLB design considerations, 183–184
See also resource utilization; responsiveness

permissions (file access permissions) (of users),
245–252

ACL specification of, 250
checking for, 251–252
denying vs. not allowing, 246–249
determining, 301, 302
for directories, 250–251, 261
for files, 250

persistence services/systems, 269
B-trees in, 298
virtual memory and, 177–178
See also persistent storage

persistent objects, 12, 269, 270
identification of, 269

persistent storage, 12–13, 269–323
checkpoints, 151
design influences on, 270
forms, 269–270
importance, 13
integrity in system crashes requirement, 13, 271
security issues, 315–316
security strategies, 315
vulnerabilities, 357
write operations to, 148
writing redo log entries to, 150–151

PGP (Pretty Good Privacy), 358, 362
phantoms, 164

phase one (of transactions), 142
phase one impurities (of transactions), 142

removing, 142–144
phase two (of transactions), 142
phase two impurities (of transactions), 142

removing, 142–144
phishing, 403
Physical Address Extension (PAE) mode,

214
physical addresses, 165–168

page frames. See page frames (of physical
addresses)

as shared by processes, 170–171
See also addresses

physical layer (in networking systems), 14, 329,
330, 355–356

security issues, 359
pipelines (between threads), 89
pipes (UNIX-family operating systems feature),

90–91, 119
placement policy (page frame assignment

selection), 204–205
platters (of disk drives), 272
plus sign (+): wildcard character, 372–373
point-to-point architecture, 370
pointers:

instruction pointers (IP registers), 30, 31
NULL pointer, 226
as problematic in shared memory,

234–235
to thread control blocks, 30
virtual file system implementations, 314
See also stack pointers

polymorphism, 271, 313
file system implementations, 313–314

POP3 (Post Office Protocol–Version 3), 330, 332
pop operation (popping values off the stack),

30–31, 429
port numbers, 328, 339

NAT rewriting of, 353, 354
portable APIs, 22
POSIX API (standard), 22, 53

for access control lists, 249–252
for capabilities storage, 242
for condition variables, 98
for descriptors, 242
for file locks, 92
for files, 275–283, 306, 307
for fixed-priority scheduling, 53, 54
for mutexes, 78–80, 114
original UNIX API: print resource on, 322
print resource on, 266
for process management mechanisms, 222–230
for readers/writers locks, 92
for replacement policy exception procedures, 213
for threads (pthreads API), 22, 33
website resource on, 38, 121

hailperin-163001 book December 7, 2005 10:25

462 ! Index

Post Office Protocol–Version 3 (POP3), 330, 332
PostgreSQL:

multiversion concurrency control, 153
website resource on, 163

pound sign (#): wildcard character, 373
PowerPC architecture: page table support, 194, 196
PPs (Protection Profiles), 415
pread procedure (POSIX API), 279, 282(2)

simulating, 283
predicate locks, 164
preemption of threads, 33–34, 72, 111–112
preemptive multitasking (in thread switching),

33–34
prepaging, 202

clustered paging, 203–204; overriding, 217
payoff, 204

presentation layer (in networking systems),
329, 330

Pretty Good Privacy (PGP), 358, 362
principals, 237, 238

vs. subjects, 257
priority. See scheduling priority
priority ceiling protocol, 122
priority inheritance, 110–111

print resource on, 122
priority inversion problem, 61, 109–111

solutions to, 110–111, 122
priority queues, 53
private storage:

address space as, 169, 170–171
virtual memory (MMU) and, 169, 170–171

procedure activations:
leaf/nonleaf activations, 432
nesting of, 432
records (activation records), 428
using stacks for, 431–433
value storage options, 29, 432–433

procedures:
calls to. See procedure activations
return addresses, 431–432
See also specific procedures

process ID numbers, 222, 223, 226
process management mechanisms (POSIX),

222–230
process switching:

and address translation, 185
context switching as, 33
and the page table, 185

processes (protection environments), 9, 25,
220–268, 252

access rights. See access rights
address space, 172; of child processes, 223
capabilities. See capabilities
characteristics (definitions), 220–221
creating, 222–223; programming example, 224;

to run different programs, 224–225
credentials. See credentials

DLL use, 171–172, 172
early terminology, 266
file descriptors for, 276
ID numbers, 222, 223, 226
inactivity periods, 180
loading and running programs, 224–227;

programming examples, 226, 227
management mechanisms (POSIX),

222–230
operating system–application process boundary,

12, 232–233, 232, 233
POSIX API, 222–230
protection. See protection (memory

protection)
protection mechanisms. See protection

mechanisms
resource allocation for, 48, 49, 62, 221
running programs: loading and running,

224–227; programming examples, 226, 227;
from shells, 225

shared memory use, 171–174, 172, 173
swapping of, 208
system context, 221
terminating, 230
thread–process distinction, 10
threads as in, 10, 220
vs. users, 257
working sets, 180, 208; print resource on, 218

processor affinity (for threads), 45, 46
processor architectures: VAX architecture, 187

See also IA-32 architecture; Itanium architecture;
MIPS architecture

processor-intensive vs. disk-intensive thread
activities, 26, 27

maximizing throughput, 58
processors:

address use, 166–167, 167
bursts of processor time: and scheduling

priority, 48
memory locations. See registers
modes of operation, 231–234; VMM support,

255–256
switching from one thread to another. See thread

switching
product security assurance, 414–417
program counters (PCs), 30
proportional-share scheduling, 50, 51, 62–65

basic mechanisms, 62
via decay usage scheduling, 61–62, 71
Linux scheduler, 63–65
using resource shares/containers in, 66, 67

protection (memory protection), 170, 230–237
address space schemes, 231–232, 234–237
context, 170, 228
mechanisms. See protection mechanisms
middleware’s job, 252
for multiple address space systems, 234–235

hailperin-163001 book December 7, 2005 10:25

Index ! 463

operating systems and, 231
processor modes, 231–234
vs. security, 257
security issues, 257–262
for single address space systems, 235–237
for whole operating systems, 253–257
within single processes, 252–253
See also access rights

protection domains, 238
creating: for whole operating systems, 253–257;

within single processes, 252–253
switching mechanism, 228–229, 238(2)

protection key registers, 236–237
protection keys (in hashed page table entries),

236
protection mechanisms (operations), 11–12, 239

access rights granting mechanism, 228–229,
238(2)

design options, 238
exec family procedure interaction with, 228
fitting into the access matrix model, 240
operating system–application process boundary,

12, 232–233, 232, 233
Protection Profiles (PPs), 415
protection systems theory, 240–241
protocol layers. See networking protocol layers
protocols, 327

cache coherence protocols, 46, 84–85
for networking. See networking protocols
priority ceiling protocol, 122
two-phase commit protocol, 154–156
See also specific protocols

proxies (stub proxies) (in RPC), 374, 374, 375, 376
ps command (program), 216, 225–226, 226, 276,

277, 282
PSPACE-complete problems, 240, 267
pthread_cond_broadcast procedure (POSIX

API), 98
pthread_cond_init procedure (POSIX API), 98
pthread_cond_signal procedure (POSIX API),

98
pthread_cond_wait procedure (POSIX API), 98
pthread_create procedure (POSIX API), 22
pthread_kill procedure (POSIX API), 36–37
PTHREAD_MUTEX_DEFAULT, 80
PTHREAD_MUTEX_ERROR_CHECK, 80
pthread_mutex_init procedure (POSIX API), 78
pthread_mutex_lock procedure (POSIX API), 78
PTHREAD_MUTEX_NORMAL, 80, 82
PTHREAD_MUTEX_RECURSIVE, 80
pthread_mutex_t type, 78
pthread_mutex_timedlock procedure (POSIX

API), 79
pthread_mutex_trylock procedure (POSIX API),

79
pthread_mutex_unlock procedure (POSIX API),

78

pthreads API, 22
yield procedure equivalent, 33

public methods: synchronized keyword for, 81,
82, 94

public-key cryptography, 362
publish/subscribe messaging, 370–371, 371,

372–373
Java RMI example, 377–382

Publisher class, 379
purity (of transactions), 142
push operation (pushing values onto the stack),

30–31, 429
pwrite procedure (POSIX API), 279, 282(2)

simulating, 283

Q
quadratic growth in code size: avoiding, 162–163
quality (system quality):

risk-management approach to, 396
and security, 396–397

quanta (thread running times), 58, 71
queuing mutexes, 86–87

vs. spinlocks, 86
Quinlan, Sean, 323

R
r permission:

ACL specification of, 250
for directories, 250
using with/without the x permission, 251

races (uncontrolled thread interactions), 72, 75–76
avoiding vs. analyzing, 121
race condition vulnerabilities, 114–115
TOCTTOU race bugs, 115, 122

radiation therapy machine (Therac-25), 76, 121
print resource on, 121

radix trees, 194
Rago, Stephen A., 266
RAIDs (Redundant Arrays of Independent Disks):

print resources on, 322
Rajkumar, Ragunathan, 71, 122
RAM (random access memory):

in disk drives, 274
in main memory. See memory (main memory)

Randell, B., 322
rate-monotonic scheduling, 54, 56

print resource on, 71
testing real-time schedules, 54–56

read actions (operations):
demand-driven reading, 177
nonrepeatable reads, 153, 154
notation for, 137
repeatable reads, 154
as reversible in conflicts, 140–141

read ahead (paging), 203
read around (clustered paging), 203–204
read committed mode (for transactions), 152–153

hailperin-163001 book December 7, 2005 10:25

464 ! Index

read permission. See r permission
read procedure (POSIX API), 279, 282–283
read requests, 272, 274
read-only virtual address space, 171
read-only virtual addresses, 169
read/write virtual address space, 171
readers/writers locks, 91–92, 91, 122

monitors with condition variables and, 98
vs. mutexes, 92
print resource on, 122
rules for guaranteeing serializability, 137,

141–142
starvation of threads by, 92, 122

reading files, 279–283
sequentially, 282–283
at specified positions, 281–282

real-time schedules: testing, 54–56
receive method, 380, 391
receiving capabilities, 242–243
records. See rows (of tables)
recovery:

deadlock detection and recovery, 105–106, 107,
128–130, 131

speed after system crashes, 151
recovery processing, 148

rules, 149–150
recursion problem in linear page tables,

188
recursive locking, 80
recursive mutexes, 80, 96
recvmsg procedure (POSIX API), 243
redirect standard input symbol (<), 276
redirect standard output symbol (>), 276
redo logging, 150–151
redo logs, 150

and commit operations, 151
writing entries into persistent storage, 150–151

Redundant Arrays of Independent Disks (RAIDs):
print resources on, 322

redundant data transmission formats,
348, 348

reference bit (in page table entries), 211
print resource on, 218

Regehr, John, 71
registers (processor registers):

IP registers (instruction pointers), 30, 31
procedure activation value storage in, 29,

432–433
protection key registers, 236–237
saving into and restoring from memory (push

and pop operations), 29, 30–31, 31, 429,
432–433; as into and from activation records,
432–433

See also stack pointers (SP registers)
registries (of remote objects), 376

passing and binding remote objects to names in,
376–377, 379–381, 380, 381

relational database systems. See database systems
relational databases:

security issues, 158
tables, 12, 270; creating, 127; displaying,

127–128
Remote interface (Java RMI), 377
Remote Method Invocation. See RMI
remote objects:

locating, 376, 377, 378–379, 379
passing and binding to names in registries,

376–377, 379–381, 380, 381
registries of, 376

Remote Procedure Call. See RPC
RemoteException class (Java RMI), 377
repeatable reads, 154
replacement policy (page eviction), 205–212

context, 205–208
creating exceptions to, 212–213
specific policies, 209–212; comparisons of,

210, 219
replay attacks, 406
resizing stacks, 429–430
resolvers (DNS request agents), 336
resource allocation (for processes), 48, 49,

62, 221
resource allocation graphs, 105, 106, 108

print resource on, 122
resource allocation–oriented scheduling, 49–50

See also proportional-share scheduling
resource consumption: by transactions, 158
resource containers:

print resource on, 71
use in proportional-share scheduling, 67

resource managers, 154, 155, 156
resource ordering:

deadlock prevention through, 104–105; print
resource on, 121

resource records: for domain names, 336
resource utilization (by computer systems), 24, 44

concurrent threads and, 24, 26–27
response time (of computer systems), 47

Gantt chart illustration, 67–68
thread switching frequency and, 48
See also responsiveness

response time–oriented scheduling, 47–48, 58–59
responsiveness (of computer systems), 24

concurrent threads and, 24–26, 27
See also response time

restoring registers (pop operation), 29, 30–31, 31,
429, 432–433

ret instruction, 34
retrieving information about standard input,

278–279
return addresses (of procedures), 431–432

storage options, 432
return from interrupt instruction, 34
Reuter, Andreas, 125, 163(2)

hailperin-163001 book December 7, 2005 10:25

Index ! 465

reversion of transactions. See failure atomicity
Riedel, Erik, 322
Rijndael (encryption standard), 362
risk-management approach to attacks, 397
Ritchie, Dennis M., 322
RMI (Remote Method Invocation), 376

Java RMI exception potential, 377–378
Java RMI publish/subscribe messaging example,

377–382
website resource on, 394

rmiregistry program (Java RMI), 381
Robbins, Kay A. and Steven, 266
rollback command, 129
rollback of transactions, 106, 129, 131

as a sign of attack, 157
root account, 260
Rosenblum, Mendel, 323
Rosencrantz, Daniel J., 164
Ross, Blake, 426
Ross, Keith W., 368
rotational latency (in disk access times), 274
round-robin (RR) policy, 53–54
routers, 326, 326–327

forwarding tables, 352
gateway routers, 351
label-switching routers, 352
message authentication feature, 358
NAT routers, 353, 354, 360

routing, 351–352
label-switching vs., 352
NAT routing, 353–355

rows (of tables), 270
RPC (Remote Procedure Call), 15, 369–370

ACL use with, 387
vs. messaging, 371–372
object-oriented and non-object-oriented

standards, 376
principles of operation, 374–377, 374, 375

RR policy (round-robin policy), 53–54
RSA system (of asymmetric-key encryption),

362–363
Rubin, Aviel D., 426
run method (Java API), 22, 161
run queue, 41–42, 42, 43, 61
Runnable interface (Java API), 161
run method, 22, 161

runnable state (of threads), 42–43
changes in, 43

running programs, 224–227
in the current directory, 258
programming examples, 226, 227, 277
from shells, 225, 276–278; xclock,

227–228
running state (of threads), 42–43

changes in, 43
running times (of threads) (before switching), 58,

71

runqueue structure (Linux), 104
runtime environment, 428
runtime stacks. See stacks
Russinovich, Mark E., 38, 71
Ruzzo, Walter L., 240, 267

S
S/MIME (Secure/Multipurpose Internet Mail

Extensions), 358
Saltzer, Jerome H., 267, 399, 426
Santry, Douglas S., 323
Sarbanes-Oxley Act security requirements, 316
Sathaye, Shirish S., 71
saving registers (push operation), 29, 30–31, 31,

429, 432–433
sched_yield procedure (POSIX API), 33
schedulers (processor schedulers), 39

decay usage schedulers, 59–62
Linux scheduler, 63–65, 71
Mac OS X scheduler, 59–60, 60, 61, 71
Microsoft Windows scheduler, 59, 60–61, 71;

print resource on, 71
multilevel feedback queue schedulers, 61; print

resource on, 71
preempt authority, 33, 72, 111

scheduling (of threads), 10, 32, 39–71
decay usage scheduling, 52, 59–62
dynamic-priority scheduling, 52, 56–62; testing

adjustments, 69
Earliest Deadline First (EDF) scheduling, 52,

56–57; deadline inheritance for, 111
fair-share scheduling, 49–50; proportional-share

scheduling vs., 50
fixed-priority scheduling, 52, 52–56
goals. See scheduling goals
importance-oriented scheduling, 49, 51, 58
lottery scheduling, 62–63, 66–67; print resource

on, 71
mechanisms, 40, 52, 52–65
processor affinity and, 45, 46
proportional-share. See proportional-share

scheduling
rate-monotonic scheduling, 54, 56; print

resource on, 71
resource allocation–oriented scheduling, 49–50.

See also proportional-share scheduling
response time–oriented scheduling, 47–48,

58–59
security issues, 65–67
stride scheduling, 67; print resource on, 71
synchronization and, 73, 109–114
thread states, 42–43; changes in, 43
throughput-oriented scheduling, 44–46, 58
urgency-oriented scheduling, 48–49, 51

scheduling goals, 40, 44–52, 51
importance, 48, 49
resource allocation, 48, 49, 62

hailperin-163001 book December 7, 2005 10:25

466 ! Index

scheduling goals (cont.)
response time, 47
throughput, 44, 58
urgency, 48–49

scheduling priority, 48–50
base priorities, 58; in decay usage scheduling,

59–62
bursts of processor time and, 48
convoy problem, 112–113
dynamic priority adjustments, 56, 57–61;

testing, 69
inversion problem, 61, 109–111
numerical priorities, 52–54
operating system parameters, 51
reasons for adjusting, 58–59
synchronization and, 73
as unclear without further clarification, 50–51
user-specified priorities, 58
See also scheduling goals

Scholten, Carel S., 121
Schroeder, Michael D., 399, 426
Schwartz, Alan, 426
SCTP (Stream Control Transmission Protocol),

330, 349
search path: leaving the current directory out, 258
Seawright, L. H., 268
sectors (of disk tracks), 272
Secure Hash Algorithm 1 (SHA-1), 364
Secure Sockets Layer. See SSL
Secure/Multipurpose Internet Mail Extensions

(S/MIME), 358
security (system security), 15–16, 395–427

authentication as the prerequisite of, 398. See
also authentication (of users)

best practices, 419–421
confidential data writing issue, 212–213
contingency planning and, 316–317
database issues, 158
defense in depth principle, 261–262
deleting files as inadequate, 315
firewalls, 359–360, 361
guiding principles, 398–401
I/O issues, 158–159
information-flow control, 407–410
intrusion detection systems (IDSes), 360–361,

418
irrevocable capabilities issue, 245
isolation issues, 158
isolation of machines exposed to attack, 360
malware, 411–414
monitoring, 398, 417–419
networking issues, 356–365
nontechnical means, 397–398
objectives, 16, 398
overwriting files as inadequate, 315–316
persistent storage issues, 315–316
persistent storage strategies, 315

policy categories, 241
print resources on, 426
product security assurance, 414–417
vs. protection, 257
protection issues, 257–262
and quality, 396–397
risk-management approach to, 397
Sarbanes-Oxley Act requirements, 316
scheduling issues, 65–67
setuid program enhancement of, 260–261
setuid program issues, 229, 259–260
synchronization issues, 114–115
thread-switching (multithreading)

issues, 34–35
transaction enhancement of, 156
transaction issues, 157–159
transaction processing system enhancement of,

157, 158
transaction processing system issues, 156
user interface design and, 261
vandalism mitigation, 316
virtual memory issues, 212–213
VMM issue, 261–262
website resource on, 426

security monitoring, 398, 417–419
security policies: categories, 241
security requirements (in STs), 415
Security Targets (STs), 415
Security-enhanced Linux (SELinux) system, 411
seek times, 273–274
seeks (on disk drives), 273
segment table, 198
segmentation (of address space), 169, 182, 197–201

ASID–segmentation comparison, 201
disincentives for, 201
paging–segmentation combination, 198–201,

199, 200
print resource on, 218

Segmented FIFO (SFIFO) replacement policy, 211
print resources on, 219

segments (of address space), 198
segments (transport-layer data transmission

chunks), 345–346
select command (SQL), 127–128
selective acknowledgment of segment

transmissions, 348
SELinux system (Security-enhanced Linux

system), 411
semaphores, 73, 98–100, 99

and bounded buffers, 98, 121
vs. monitors with condition variables, 98
as mutexes, 99
operations on, 99
print resource on, 121
use for, 99–100

sending capabilities, 242–243
sendmsg procedure (POSIX API), 243

hailperin-163001 book December 7, 2005 10:25

Index ! 467

sequential I/O, 282–283
sequential threads, 21

processor-intensive vs. disk-intensive activities,
26, 27

serial execution (of transactions), 137
histories. See serial histories

serial histories (of systems/transactions), 138,
142, 144

print resources on, 164
vs. serializable histories, 144

serializability, 137, 142
print resources on, 164
rules for guaranteeing, 137, 141–142
sacrificing to increase concurrency, 152
snapshot isolation and, 154

serializable execution (of transactions), 137
vs. deterministic execution, 138
equivalence, 137; print resources on, 164
histories. See serializable histories

serializable histories (of systems/transactions), 139,
142, 144

equivalence, 139; print resources on, 164;
verification of, 139–141, 142–143

print resources on, 164
rules for guaranteeing serializability, 137,

141–142
vs. serial histories, 144

Server class, 343
Server Message Block (SMB) protocol, 338
server-side stream sockets: life cycle (through

states), 341
servers:

certificates, 387–388
iSeries (System/38–AS/400) (IBM), 237, 242,

267
in messaging systems, 132–133, 132, 371,

371–372, 372
name servers, 336, 337
in RPC systems, 374–375, 374, 375
throughput, 44
See also web servers

ServerSocket class (Java API), 341, 342
session layer (in networking systems),

329, 330
set group ID bit, 252
set user ID bit, 228
set-associative caches, 204
setgid bit, 252
setgid programs: programming guidelines, 260
setuid bit, 228
setuid programs, 228–229, 238(2)

programming oversights and guidelines, 259–260
security enhancement, 260–261
security issues, 229, 259–260

SFIFO (Segmented FIFO) replacement policy, 211
print resources on, 219

Sha, Lui, 71, 122

SHA-1 (Secure Hash Algorithm 1), 364
shadow paging, 311, 312, 313, 323

print resource on, 323
Shapiro, Jonathan S., 426–427
shared data structures:

locks. See locks (on shared data structures)
persistent storage forms, 12
race problem, 74–76
transaction actions on stored entities, 137–138

shared links (in networks), 355–356
shared memory (in multiple address space

systems), 234
pointers as problematic in, 234–235
virtual memory and, 171–174

shared objects: virtual addresses as names for,
168, 235

shared secret cryptographic techniques, 362
MACs, 363, 364

shells, 5
running programs from, 225, 276–278; xclock,

227–228
stripped-down shell, 228, 229

Shortest Job First (SJF) policy, 47–48
Shoshani, A., 122
shoulder surfing, 402
signal operation (notify operation), 94, 96–97
signatures (of viruses and worms), 414
Simple Mail Transfer Protocol (SMTP), 330, 332
simple security property, 410
single address space systems, 235–237

debugging in, 235
protection key protection scheme, 236–237

single indirect blocks, 293
single-threaded programs, 20
single-threaded systems: waiting mechanism, 41
single-threaded web servers, 25
SJF (Shortest Job First) policy, 47–48
skeletons (ties) (in RPC), 375, 375
slash character (/): pathname delimiter, 276
sleep method (Java API), 23, 35, 117
sleep procedure (POSIX API), 23
Sleep procedure (Win32 API), 37
smashing the stack buffer overflow, 413, 414
SMB (Server Message Block) protocol, 338
SMTP (Simple Mail Transfer Protocol), 330,

332
snapshot isolation, 153–154

print resources on, 164
and serializability, 154

snapshots, 312
sniffers, 402
SOAP (Simple Object Access

Protocol—formerly), 384
website resource on, 394

social engineering, 401
socket APIs, 340–344
Socket class (Java API), 341, 342

hailperin-163001 book December 7, 2005 10:25

468 ! Index

sockets (for transport-layer connections),
14, 340

binding of (to their own addresses), 340
life cycles (through states) of all three

types, 341
server connections and communications with,

342–344; programming examples,
343, 344

states, 340–342
types, 40

soft links. See symbolic links
soft page faults, 205
soft updates strategy, 312, 313

print resource on, 323
software TLBs, 197
software/hardware interface, 182–185

for architectures with/without a page table
walker, 184–185

Solomon, David A., 38, 71
Soltis, Frank G., 267
Soules, Craig A. N., 323
SP registers. See stack pointers
Spafford, Gene, 426
sparse address space allocation, 176–177
sparse files, 295
spatial locality:

of processes: and demand paging, 203
of programs, 45
of virtual addresses, 182–183
of virtual memory accesses, 190

speed of recovery after system crashes, 151
spinlocks, 121

basic spinlocks, 83–84, 84
cache-conscious spinlocks, 84–85
print resource on, 121
vs. queuing mutexes, 86

spoofing attacks, 402–403, 402
Spotlight search feature (Mac OS X), 303, 304–305
spurious wakeups, 96
SQL commands, 127–128
SQL Server: read committed mode, 152
SQL Slammer worm, 358
SSL (Secure Sockets Layer), 358, 362, 403

limitation, 389–390
web services usage, 389

stack algorithms, 210–211
stack pointers (SP registers), 30, 31, 430–431, 431

saving and switching, 30–31
stack-allocated storage, 429
stacks (of activation records), 428–433, 431

allocate and deallocate operations on,
429–430, 431

per-thread stacks, 30–31, 31
pushing and popping registers onto and off,

30–31, 429
as represented in memory, 430–431
resizing, 429–430

smashing the stack buffer overflow, 413, 414
using for procedure activations, 431–433
virtual memory use, 430

standard error output file descriptor, 276
standard input, 276

retrieving information about, 278–279
standard input file descriptor, 276
standard output, 276
standard output file descriptor, 276
standby page list, 206, 207
star property (∗-property), 410
starvation (of threads), 65

by readers/writers locks, 92, 122
stat procedure (POSIX API), 301
stater program, 301, 302
STDERR_FILENO, 276
STDIN_FILENO, 276
STDOUT_FILENO, 276
Stearns, Richard E., 164
Stevens, W. Richard, 266, 368
sticky bit w permission limitation, 251
Stirling, Colin, 164
stop method (Java API), 37
storage:

private storage, 169, 170–171
procedure activation value storage options,

432–433
stack-allocated storage, 429
See also disk storage; memory; persistent storage;

virtual memory
stored objects/entities:

persistent forms, 12
phantoms, 164
protection goal, 170
transaction actions on, 137–138

storing:
buffers, 100
of login passwords, 212
undo logs, 148

Stream Control Transmission Protocol
(SCTP), 349

stride scheduling, 67
print resource on, 71

STs (Security Targets), 415
stub proxies (in RPC), 374, 374, 375, 376
Sturgis, Howard E., 163
subdirectories: disk space allocation

policies, 289
subjects, 237

as objects, 237
vs. principals, 257
See also processes

subscribe method, 379
Subscriber class, 380–381, 382
substituting RAM for disk storage, 180
Sun Microsystems: email delivery software

TOCTTOU race bugs, 115, 122

hailperin-163001 book December 7, 2005 10:25

Index ! 469

supervisor mode (kernel mode) (of
processors), 231

swapping (of processes), 208
swaps (of transaction actions), 139–141, 142–143

illegal and legal swaps, 140
switches (in networks), 325
switchFromTo procedure (POSIX API), 29, 34
switching threads. See thread switching
SwitchToThread procedure (Win32 API), 33–34
symbolic links (soft links) (in file systems),

307–308, 307, 336
symmetric-key encryption (cryptography), 362

standard techniques, 362
synchronization (of threads), 10–11, 25–26,

72–122
barriers, 92–93, 93, 98
bounded buffers, 89–91
bugs in, 74, 114–115
condition variables (with monitors), 73,

94–98
messaging as, 74
mutual exclusion. See mutual exclusion
patterns, 73, 89–93
problem from. See deadlocks
readers/writers locks, 91–92, 91, 98
and scheduling, 73, 109–114
security issues, 114–115
semaphores, 73, 98–100, 99

synchronized keyword: for public methods,
81, 82, 94

synchronized statement, 81–82, 100
synchronous writes strategy, 311, 312
system calls, 231

for C-list entries, 242
See also specific procedures

system crashes:
from buffer overflow, 412–413
durability in, 164
failure atomicity in, 164
and metadata integrity, 310
persistent storage integrity requirement,

13, 271
recovery speed after, 151

system histories (transaction histories),
138–144

equivalence of serializable histories, 139;
verification of, 139–141, 142–143

nonserializable histories, 139
print resources on, 164
rules for guaranteeing serializability, 137,

141–142
serial histories, 138, 142, 144; vs. serializable

histories, 144
serializable histories, 139, 142, 144; vs. serial

histories, 144
system mode (kernel mode) (of processors),

231

system security. See security
System/38 (IBM), 237

print resource on, 267

T
tables. See address-mapping table; clustered page

tables; hashed page tables; inverted page
tables; linear page tables; multilevel page
tables; page tables; segment table; tables (in
relational databases)

tables (in relational databases), 12, 270
creating, 127
displaying, 127–128

tag bits (on memory words): for preventing
capability forgery, 243

Talluri, Madhusudhan, 218
Tanenbaum, Andrew S., 368
Targets of Evaluation (TOEs), 415
task control blocks. See thread control blocks
tasks, 25

See also processes; threads
TCBs. See thread control blocks
TCP (Transport Control Protocol), 328, 330, 339,

344–347
congestion control, 346–347, 347–348
evolution within and beyond, 347–349
message authentication feature, 358
segment transmission and acknowledgment

mechanisms, 345–346
TCP sockets. See sockets
TCP Vegas, 348
telnet program:

connecting to web servers with, 333–334,
342–343

TCP connection, 339
temporal locality:

of programs, 45
of virtual addresses, 182–183
of virtual memory accesses, 190

TENEX file system, 323
terminating processes, 230
testing:

the BoundedBuffer class, 94
dynamic priority adjustments, 69
real-time schedules, 54–56

Thanish, Peter, 164
theorems: on fixed-priority scheduling, 54–56, 57
theory of protection systems, 240–241
Therac-25 (radiation therapy machine), 76, 121

print resource on, 121
Thompson, Ken, 268, 322
thrashing, 208
Thread class, 161
childThread object, 22
currentThread method, 161
sleep method, 23, 35, 117
stop method, 37

hailperin-163001 book December 7, 2005 10:25

470 ! Index

thread control blocks (TCBs), 29
pointers to, 30
saving registers in, 30–31, 31

thread interactions, 10, 72
controlling, 2, 10–12. See also synchronization;

virtual memory
supporting across space, 3, 14–15. See also

messaging; networking; RPC (Remote
Procedure Call); web services

supporting across time, 2, 12–13. See also file
systems

uncontrolled. See races
thread scheduling. See scheduling (of threads)
thread states, 42–43

changes in, 43
thread switching (multithreading):

automatic, 33
context switching as, 33
cooperative tasking approach, 33
determining the number of switches per

second, 38
frequency: and response time, 48
overhead cost, 44–46, 71, 111, 112
preemptive multitasking approach, 33–34
programming example, 31–32
running times (before switching), 58, 71
security issues, 34–35

threads, 9, 19–38
API support for, 10
categories, 12
concurrent. See concurrent threads
convoy phenomenon, 87, 109, 111–114
convoys, 112
deadlocks. See deadlocks
dispatching, 33, 43
DoS attack strategies and defenses, 65–67
execution status information, 30
fibers (user-level threads), 21, 232, 233, 233;

print resource on, 71
groups sharing a virtual address space. See

processes
implementation options, 232–233
interactions between. See thread interactions
interleaving of, 72, 76
isolating threads of different processes, 11
kernel threads, 232–233
lifetimes, 20
multiple. See multiple threads
native threads (kernel-supported user threads),

232–233, 232
pipelines between, 89
preemption of, 33–34, 72, 111–112
process–thread distinction, 10
as in processes, 10, 220
processor affinity for, 45, 46
processor-intensive vs. disk-intensive activities,

26, 27, 58

program–thread distinction, 19
referring to, 29
running times (before switching), 58, 71
scheduling. See scheduling (of threads)
sequential threads, 21
spawning of, 22
stacks for, 30
starvation of, 65, 92, 122
switching. See thread switching
synchronization of. See synchronization

(of threads)
user-level threads (fibers), 21, 232, 233, 233;

print resource on, 71
virtual memory as accessible to, 220–221
waiting mechanisms: busy waiting, 41; wait

operation, 94, 96. See also wait queues
waking mechanisms: notify operation, 94,

96–97; timer interrupts, 41–42, 43
throughput (of computer systems), 44, 58

convoy phenomenon and, 109, 113
throughput-oriented scheduling,

44–46, 58
ticket-sales example, 74–76, 91
tie-breaking strategies for numerical scheduling

priorities, 53–54
ties (skeletons) (in RPC), 375, 375
time bursts (of processor time): and scheduling

priority, 48
Time Of Check To Time Of Use (TOCTTOU) race

bugs, 115, 122
time slices (thread running times), 58, 71

size: and TLB performance, 184
time stamps (for files), 301
timer interrupts, 41–42, 43
TLB hits, 183
TLB misses, 183, 185
TLBs (translation lookaside buffers), 183

ASID tags, 185
design considerations, 183–184
entry flushing, 185
page table entry loading into, 184
performance vs. page table performance,

184
software TLBs, 197

TOCTTOU (Time Of Check To Time Of Use) race
bugs, 115, 122

TOEs (Targets of Evaluation), 415
tokens, 405
top command, 70
Topic interface, 378, 378
TopicServer class, 379, 380, 381, 391
tracks (on disks), 272
transaction actions:

conflicting pairs, 140–141, 143
equivalence-preserving swaps, 139–141, 142–143;

illegal and legal swaps, 140
execution of. See execution (of transactions)

hailperin-163001 book December 7, 2005 10:25

Index ! 471

notation for, 137–138
in serial, serializable, and nonserializable

histories, 138–139
transaction context, 155
transaction histories. See system histories
transaction manager, 154, 155, 156
transaction processing systems:

components, 154
coordinating subsystems, 154–156
print resources on, 163
rules and operation, 141–142
security enhancements, 157, 158
security issues, 156
undo logging, 145–147
write operation approach, 149

transactions (atomic transactions), 11, 74,
123–164

abort actions, 125, 129; compensating for not
executing in workflow systems, 134–135; upon
restart, 148–149; and undo logs,
148

abstraction of, 157, 158
ACID test of system support for, 125; print

resource on, 163
actions. See transaction actions
atomicity, 124–125, 125–126; aspects, 124, 137;

mechanisms for ensuring, 137–147. See also
——: failure atomicity, below

commit actions, 125, 129; delaying,
136

compensating transactions, 134–135
concurrency, 126, 151; increasing, 152
concurrent transactions, 11, 126, 130
consistency, 125, 144
context, 155
in database systems, 127–130
deadlocks between, 144
deterministic execution of, 138
durability, 125; and commit operations, 150;

failure atomicity and, 148–149; issues,
147–148; in message-queuing systems,
131–132; in system crashes, 164; update
storage, 150–151; write-ahead logging,
149–150

equivalence of serializable executions, 137; print
resources on, 164

execution of, 137, 138
failure atomicity, 124, 144–145; ad hoc

programming difficulties, 145, 146, 157; and
durability, 148–149; in system crashes, 164;
undo logging (transaction processing system),
145–147

failures, 124, 125, 145; testing complications,
145, 146

histories. See system histories
impurities, 142; removing, 142–144
inconsistent states (temporary), 144–145

isolation, 11, 124, 125, 126; print resources on,
164; reduced, 152–153; security issues, 158;
snapshot isolation, 153–154

in message-queuing systems, 15, 130–135
and metadata, 136
phases, 142
print resources on, 163
processing systems. See transaction processing

systems
purity, 142
read committed mode, 152–153
resource consumption, 158
reversion of. See ——: failure atomicity, above
rollback of, 106, 129, 131; repeated rollback

attacks, 157
rooted tree analogy, 123–124, 124, 125–126
security enhancement, 156
security issues, 157–159
serial and serializable execution of, 137
serial histories, 138, 142, 144
serializable histories. See serializable histories
as storage-related, solely, 138
two-phase locking, 137–144; concurrency price,

151; rules, 137, 141–142; systems suitable for,
151–152; undoing write operations and, 147

update storage, 150–151
visibility to the user, 136
workload mix, 151–152

translation lookaside buffers. See TLBs
Transport Control Protocol. See TCP
transport layer (in networking systems), 14, 328,

330, 339–349
data transmission chunks (segments), 345–346
security problems and enhancements, 358
services, 339

transport protocols, 328, 330, 349
support sources, 331

traps, 231
VMM trap simulation, 255–256, 256

traversing directories, 251
tree monitors, 126
trie data structure, 194
triple indirect blocks, 294
Tripwire system, 418–419
Trojan horses, 257

credential-related vulnerabilities, 257–259
print resource on, 268
viruses and worms vs., 411

tuples. See rows (of tables)
turnaround time (in batch processing),

47–48
Turner, Clark S., 121
Turner, Rollins, 219
two-factor authentication, 405–406
two-phase commit protocol, 154–156

components, 154, 155
process steps, 155–156, 155

hailperin-163001 book December 7, 2005 10:25

472 ! Index

two-phase locking, 137–144
concurrency price, 151
print resource on, 164
rules, 137, 141–142
systems suitable for, 151–152
undoing write operations and, 147

type systems: for preventing capability
forgery, 244

U
UDDI (Universal Description, Discovery, and

Integration), 387
UDP (User Datagram Protocol), 339
Ullman, Jeffery D., 219, 240, 267
unbound state (of sockets), 340
undo logging, 145–147
undo logs, 135, 145–147

abort actions and, 148
combined log of, 147, 149
storing, 148
write operations to, 148

undo operation: idempotency, 149
undoing write operations, 147
unique indexes, 304
unitary, 163
United States military classification

levels, 407–409
Universal Description, Discovery, and Integration

(UDDI), 387
UNIX-family operating systems:

file system design, 291–292
pipes feature, 90–91, 119
replacement policy, 208
and segmentation, 201
See also Linux; Mac OS X; POSIX API (standard)

unlink procedure (POSIX API), 306–307
unlock actions (operations):

assumptions regarding, 139
notation for, 138
transaction processing system rules, 141–142
See also unlocking mutexes

unlocking mutexes, 77–78, 77
queuing mutexes, 87, 87, 88
spinlocks, 84, 84

unordered linear lists, 308–309
up operation, 99
update storage (for transactions), 150–151
urgency (of tasks/threads), 48–49, 51

specification of, 49
urgency-oriented scheduling, 48–49, 51
USENIX Association: print resources on, 17, 18
user authentication. See authentication (of users)
User Datagram Protocol (UDP), 339
user groups (file owners), 249–250
user interface design: and security, 261
user mode (of processors), 231
user-interface programs, 5

user-level threads (fibers), 21, 232, 233, 233
print resource on, 71

user-specified priorities, 58
users:

authentication of. See authentication (of users)
file access permissions. See permissions
principals, 237, 238
vs. processes, 257

V
V (up) operation, 99
valid bits: linear page table entry access control

bits, 185–186, 186, 237
values:

inconsistency of variable values, 75–76
procedure activation value storage options,

432–433
See also registers

Van Horn, Earl C., 266
vandalism mitigation, 316
variables:

condition variables (with monitors), 73, 94–98
inconsistency of values, 75–76
local variable value storage options, 432–433

VAX architecture, 187
print resource on, 218

verifier (JVM), 253
dataflow analysis theorem, 253, 264
print resource on, 267

versioning of files, 323
print resources on, 323
snapshots, 312

vfs_write procedure (Linux kernel), 314,
314

VFSs (virtual file systems), 314
distributed file system support, 338

virtual address space. See address space
virtual addresses, 165–168

instructions in, 235
as names for shared objects, 168, 235
pages. See pages (of virtual addresses)
read-only addresses, 169
space for. See address space (virtual

address space)
spatial locality, 182–183
temporal locality, 182–183
undefined addresses, 169
See also addresses

virtual file systems. See VFSs
Virtual Machine Monitors. See VMMs
virtual memory, 11, 165–219

as accessible to threads, 220–221
demand-driven program loading, 178
dirty page tracking, 177–178
flexibility, 169
function (essence), 165–166
linear page table storage solution, 188–190

hailperin-163001 book December 7, 2005 10:25

Index ! 473

mapping of files into, 279–281
mechanisms, 169, 180–201. See also MMU

(memory management unit)
memory allocation, 174–176; of sparse address

space, 176–177
as paging (page frame assignment), 197
paging to disk, 180
and persistence services, 177–178
policies for, 201–212
print resource on, 218
and private storage, 170–171
properties, 168–169
security issues, 212–213
and shared memory, 171–174
sparse address space allocation, 176–177
stack use of, 430
uses for, 170–180, 218
VMM handling of, 256–257
zero filling. See zero filling (of memory)
See also MMU (memory management unit)

virtual memory accesses: temporal and spatial
locality, 190

Virtual Private Networks (VPNs), 359
viruses, 412

antivirus scanning programs and, 414
signatures, 414

Vista (Windows), 303
VM/370, 268

print resource on, 268
VMMs (Virtual Machine Monitors), 254–255

operation of, 255–257, 256
print resource on, 267
security issue, 261–262
trap simulation, 255–256, 256

VMS operating system, 208
print resource on, 218

vmstat program (Linux), 38
volatile memory, 125
Vossen, Gottfried, 163, 164
VPNs (Virtual Private Networks), 359
vulnerabilities:

buffer overflow vulnerabilities, 412–414,
414, 433

of credentials, 257–259
to denial of service (DoS) attacks, 65–67, 157,

358, 412
in networking, 357
of operating systems, 15–16
of persistent storage, 357
of race conditions, 114–115
See also attacks

W
w permission:

ACL specification of, 250
application program vulnerability, 258
for directories, 250, 251

WAFL file system, 312
wait method (Java API), 94, 95, 96
wait operation (condition variables), 94, 96
wait queues, 41–42, 42, 43

convoys in, 112–113
dump mutex, 113–114, 113

waiting for child processes, 228
waiting mechanisms (for threads):

busy waiting, 41
wait operation, 94, 96
waitpid procedure, 228
See also wait queues

waiting state (of threads), 42–43
changes in, 43

waitpid procedure (POSIX API), 228
waking mechanisms (for threads):

notify operation, 94, 96–97
spurious wakeups, 96
timer interrupts, 41–42, 43

WAL (write-ahead logging), 149–150
Waldspurger, Carl A., 66–67, 267
WANs (wide area networks), 326
web browsers: system responsiveness needs during

download time, 25–26
web servers:

connecting to with telnet, 333–334, 342–343
responsiveness during request time, 24
single- and multiple-threaded servers, 25

web services, 15, 331, 382–387
certificate use, 387–388
client authentication, 388–390
GoogleSearch security limitation,

388–389
interface specification standard (WSDL), 383–384
registry standard (UDDI), 387
support tools, 386–387
transmission format (SOAP), 384
transport mechanism (HTTP), 384–386
website resource on, 394
XML and, 383, 384

Web Services Activity web site, 394
Web Services Description Language (WSDL),

383–384
website resource on, 394

Web Services Interoperability Organization:
Basic Security Profile, 389, 390
web site, 394

Web Services Security Standard: message digital
signature mechanism, 390

WebSphere MQ (IBM), 7, 370
wedding analogy (two-phase commit protocol),

154, 164
Weikum, Gerhard, 163, 164
Wi-Fi, 356

security issues, 359
wide area networks (WANs), 326

technology, 356

hailperin-163001 book December 7, 2005 10:25

474 ! Index

wildcard characters (+, #), 372–373
Wilkes, John, 322
Win32 API: yield procedure equivalent,

33–34
Windows. See Microsoft Windows
Windows Vista, 303
WinFS, 303
Wool, Avishai, 368
Woolf, Bobby, 394
workflow systems: for message-queuing systems,

133–135, 163–164
working directory: changing, 276
working sets (of processes), 180

in excess of free page frames, 208
print resource on, 218

worms, 412
antivirus scanning programs and, 414
buffer overflow attacks from, 412–414, 414
and DoS attacks, 412
email worms, 258, 412
signatures, 414
SQL Slammer worm, 358
vs. Trojan horses, 411

write actions (operations):
notation for, 137
transaction processing system approach to, 149
to undo logs and persistent storage, 148, 150–151
undoing, 147

write order disk space allocation strategy,
287–288

write permission. See w permission
write procedure (POSIX API), 279, 282–283
write requests, 272, 274

handling with pointers, 314
write-ahead logging (WAL), 149–150

writing files, 279–283
sequentially, 282–283
at specified positions, 281–282

WSDL (Web Services Description Language),
383–384

website resource on, 394

X
x permission:

ACL specification of, 250
for directories, 251, 261
using with/without the r permission, 251

x86 architecture. See IA-32 architecture
xclock program, 227–228
Xeon hardware, 254
XFS file system (Linux), 135

disk space allocation approach, 290
extent maps, 297

XML (Extensible Markup Language): and web
services, 383, 384

Y
Yellin, Frank, 267
yield procedure, 32–33

in preemptive systems, 33–34

Z
z/VM (IBM), 254, 267–268

evolution of, 268
print resources on, 268

zero filling (of memory), 178–179
concurrent threads and, 26
print resources on, 38, 218

zero page list, 205, 207
zero page thread, 206

