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C H A P T E R

11

11.1 Introduction
I have addressed security issues in each preceding chapter because security is a perva-
sive design issue, the same way performance is. Just as one can’t discuss virtual memory
mechanisms or persistent storage as though performance didn’t exist and then devote
a later chapter solely to performance, it would have been wrong to treat security as
an add-on. On the other hand, there has been such sustained attention to security
from so many talented researchers that a rich, coherent body of security concepts has
resulted, worthy of a chapter of its own.

Section 11.2 recapitulates and amplifies on Chapter 1’s definition of security and
statement of security objectives. It also lists a number of high-level security principles,
many of which were illustrated in particular cases throughout the book.

Sections 11.3 and 11.4 discuss the two most well-developed areas of security tech-
nology: the authentication of user identities and the provision of access control and
information-flow control to limit the authority of users. The latter topic builds on
Chapter 7’s introduction to protection. (Another well-developed area of security tech-
nology, cryptography, was addressed in Chapter 9.)

Section 11.5 describes viruses and worms, some of the most prevalent security
threats, which fall largely outside of the scope of conventional authentication and

! 395 "
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authorization controls. Because worms often propagate by exploiting buffer-overflow
vulnerabilities, I also describe this widespread form of vulnerability in the same section.

Security measures are subject to imperfection, just like all other human endeavors.
Sections 11.6 and 11.7 describe two responses to this reality: (1) assurance techniques
used to assess the quality of security measures and (2) monitoring techniques used to
collect information on attacks, particularly any that are not thwarted.

Finally, Section 11.8 closes the book on a practical note by providing a summary
of key security best practices. Many of these have already been mentioned in earlier
chapters or will be mentioned in the course of Sections 11.2–11.7. However, by bring-
ing all of them together in one place, I hope to provide something of a checklist for
your guidance. After this summary, the chapter ends with exercises, programming and
exploration projects, and notes.

11.2 Security Objectives and Principles
Security is best understood as one aspect of overall system quality. Like quality in
general, it refers to how well the system meets the objectives of its owner or other
primary stakeholders. If you think about all the factors that can stop a system from
meeting those objectives, it should be clear that quality stems from a combination
of proper design, implementation, and operation. Similarly, security spans all these
areas. Before examining what makes security different from other aspects of quality, I
would like to pin down the definition of quality a bit more carefully.

A tempting first definition of a quality system is that it is one that is designed,
implemented, and operated so as to meet the objectives of its owner. However, this
definition is somewhat unrealistic because it fails to acknowledge that decisions, par-
ticularly regarding design, need to be made without complete knowledge of how they
will affect the system’s suitability. Therefore, I would refine the definition to say that
a quality system is one that is designed, implemented, and operated to reduce to an
appropriate level the risk that it will fail to meet the objectives of its owner.

A system’s risk has been reduced to an appropriate level if it is preferable to accept
the remaining risk than to incur the costs of further reducing the risk. This definition
makes risk management sound like a straightforward economic calculation, like decid-
ing whether to continue paying high fire-insurance premiums for an old warehouse
or instead build a new, more fire-resistant warehouse. Unfortunately, the decisions
regarding system development and operation are not so precisely calculable.

An insurance company has a good estimate of how likely the warehouse is to burn
down; the probability a computer system will fail to meet objectives is far fuzzier. In
addition, the insurance company has a good estimate of how large a loss would result
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from the fire, denominated in dollars. In contrast, the consequences of a low-quality
computer system may be difficult to predict, and in some cases may not be adequately
translatable into financial terms. Consider, for example, a computer system that is
essential to national security.

Nonetheless, however imperfect the risk-management approach to system quality
may be, it provides the correct conceptual framework. The management goal should
be to expend resources in a way that provides a commensurate reduction in risk. This
requires keeping in view all three factors: cost, likelihood of failure, and consequences
of failure. Moreover, all three factors may be manipulable. For example, rather than
building a new warehouse, it may be preferable to reduce the amount of material stored
in the warehouse, thus reducing the possible loss. Similarly, rather than making a
computer system less likely to fail, it may be preferable to reduce reliance on the system
so that its failure would not be so significant. That reliance may be reduced through
the use of redundant computer systems as well as through the use of noncomputerized
systems.

Having provided this background on quality in general, I can define system secu-
rity similarly. A system is secure if it is designed, implemented, and operated so as
to reduce to an appropriate level the risk that it will fail to meet the objectives of
its owner, even in the face of adversaries. An adversary is someone with objectives so
contrary to those of the owner as to strive to make the system fail.

One mildly interesting consequence of this definition is that security is irrelevant
for low-quality systems, because they will fail to meet their owners’ objectives even
without intervention by adversaries. However, the more interesting consequence is
that the risk-management approach to system quality needs to be extended to include
the actions of adversaries.

A secure system need not be impervious to attack by adversaries. In fact, it need not
even be especially difficult for adversaries to interfere with. Instead, what is needed is
that the likelihood an adversary will choose to mount an attack, the likelihood that the
attack will succeed, and the damage likely to be done to the system owner’s objectives
by a successful attack all combine to produce an appropriate level of risk relative to
the cost of available countermeasures.

Generally, an acceptable level of risk will not be achievable if the system offers no
resistance to attack. However, at some point further reduction in the system’s vulner-
ability will be a less appropriate risk-management approach than reducing the threats
the system faces and the consequences of a successful attack.

Some of these risk-management actions may be nontechnical. For example, if the
organization can avoid creating disgruntled employees, its systems will not face such
severe threats, independent of how vulnerable they are. As another example, a com-
pany might choose to accept the cost of repeated data entry rather than store its
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customers’ credit-card numbers online. Doing so will both reduce threats (because
adversaries will have less motivation to break into the system) and reduce the conse-
quences of successful attacks (because the company will lose less customer goodwill).

However, it would be wrong to equate technical efforts with only the reduction
of vulnerabilities and assume that all efforts to reduce threats or the consequences
of failure are nontechnical in nature. In fact, one of the most active technical areas
today is the monitoring of systems’ operation; I discuss this in Section 11.7. This mon-
itoring does nothing to reduce a system’s inherent vulnerability. However, it both
deters adversaries (especially adversaries internal to the organization), thereby reduc-
ing threats, and allows rapid-response incident-handling teams to quickly and effi-
ciently get systems operational again after attacks, thereby reducing losses.

So, what might the owner’s objectives be that an adversary could seek to thwart?
There is no end to the specific objectives an owner might have. However, there are
four broad classes of objectives that commonly arise in discussions of security:

• The owner may wish to maintain the confidentiality of information stored in the
computer system. That is, the information should not be disclosed to any person
who has not been authorized to receive it.

• The owner may wish to maintain the integrity of information stored in the com-
puter system. That is, the information should not be modified or deleted by any
person who has not been authorized to do so.

• The owner may wish to preserve the availability of the services provided by the
computer system. That is, persons authorized to use the system should be able to
do so without interference from adversaries. The adversaries should not be able
to cause a denial of service.

• The owner may wish to ensure accountability. That is, it should be possible to deter-
mine how users have chosen to exercise their authority, so that they can be held
responsible for the discretionary choices they made within the limits set by the
security controls.

All four of these objectives have a common prerequisite, user authentication. That
is, the system must verify that each user is correctly identified. Without reliable user
identities, there is no way the system can enforce a restriction on which users can
retrieve or modify information and no way it can keep records of who has done what.
Even availability relies on authentication, because without a way to determine whether
a user is a bona fide system administrator, there is no way to control the use of com-
mands that shut the system down.

To increase the chance that these objectives are achieved, system designers have
found it useful to have a guiding set of principles. These are more specific than the
overall risk-management perspective sketched earlier, but less specific than individual
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technical measures. Most of these principles came to prominence in a 1975 paper by
Saltzer and Schroeder, though they date back yet further. The following list largely
echoes Saltzer and Schroeder’s:

Economy of mechanism: Simple designs that consistently use a small number of gen-
eral mechanisms are more likely to be secure. An example would be Chapter 5’s
point that a general-purpose transaction-processing infrastructure is more likely
to be secure than individual ad hoc mechanisms for atomicity.

Fail-safe (and fail-noisy) defaults: A security system should be designed to withhold
access by default. If anything goes wrong in the granting of authority, the result
will be too little authority, rather than too much. This makes the problem more
likely to be fixed, because legitimate users will complain. An example from Chap-
ter 7 is Microsoft’s mechanism for resolving conflicts between ACL entries. That
mechanism governs the case when one entry says to allow a permission and
another says to deny it. The kernel itself is not fail-safe, because it gives prece-
dence to whichever entry is listed first. However, the higher-level API used by the
GUI is fail-safe, because it always gives precedence to denying permission.

Complete mediation: Ideally, every access should be checked for authority. Processes
should not be allowed to continue accessing a resource just because authority was
checked at some earlier point. An example from Chapter 7 is the change IBM made
in deriving the AS/400 design from the System/38. The original design used ACLs
to decide whether to grant capabilities, but then allowed the capabilities to be
retained and used without any further reference to the ACLs. The revised design
causes the ACLs’ record of authorization to be checked more consistently.

Open design: The only secret parts of the security mechanism should be cryptographic
keys and passwords. The design should be inspected by as many parties as possible
to increase the chance of a weakness coming to light. An example would be Chap-
ter 9’s description of openly standardized cryptographic algorithms. In particular,
that chapter mentioned that the MD5 algorithm was found to be weak. I would
not have been able to give you that warning without the public scrutiny MD5 has
received.

Separation of privilege: No one individual should be authorized to carry out any par-
ticularly sensitive task. Instead, the system should be designed so that two autho-
rized users need to collaborate. Among other benefits, this defends against the
corruption of persons in positions of authority.

Least privilege: Each process should operate with only the authority it needs so that
even if an adversary makes something go wrong in the process’s execution, there
will be many kinds of damage it can’t do. In Chapter 4, I described a case where
adversaries exploited a Time Of Check To Time Of Use (TOCTTOU) vulnerability
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to trick a mail delivery program into writing into sensitive files. I highlighted the
failure to use proper synchronization, resulting in the vulnerable race condition.
However, I could equally well point to that mail program as a failure to honor the
principle of least privilege. The mail program needed authority only to write in
each user’s mail file, not authority to write in all files whatsoever. Because UNIX
provided no easy way to grant it just the requisite authority, it was given way too
much, and hence its vulnerability was rendered far more dangerous.

Psychological acceptability: All security mechanisms must have sufficiently well-
designed user interfaces that they will be used correctly. An example is the graph-
ical user interface Microsoft Windows provides for ACLs, as shown in Chapter 7.
As I pointed out there, the user interface design includes such features as hiding
unnecessary complexity.

Work factor: Just as you reason about the cost and benefit of security countermea-
sures, you should reason about your adversaries’ cost/benefit trade-offs. You should
make sure that breaking into your systems takes more time and trouble than it is
worth. An example would be the discussion of cryptographic key length in Chap-
ter 9. Keys are not completely secure, in that they can be figured out with sufficient
trial and error. However, the usual key lengths are such that adversaries will not
have the resources necessary to find the keys in this way.

Compromise recording: If the system’s security is breached, information about the
breach should be recorded in a tamper-proof fashion. This allows an appropriate
technical and legal response to be mounted. An important example of this prin-
ciple, described in Chapter 9, is the use of network intrusion detection systems.

Defense in depth: An adversary should need to penetrate multiple independent
defenses to be able to compromise a system’s functioning. For example, Chapter 9
suggested the use of multiple firewalls, such as hardware firewalls at the organiza-
tional and workgroup perimeters and a software firewall on each desktop machine.

Alignment of authority and control: The same person should control what a proc-
ess will do and supply the authorization credentials for the process’s action. In
Chapter 7, I described the risk of Trojan horse programs, which combine their
executors’ authority with their authors’ control, and setuid programs, which may
combine their executors’ control with their authors’ authority. Many network ser-
ver programs have problems similar to setuid programs, in that they allow anony-
mous individuals elsewhere on the Internet some degree of control over their
actions while using a local user’s authority.

Physical security: The system’s owner should control physical access to computer
equipment and unencrypted data. An example from Chapter 8 is that disk drives
must be protected from physical theft. Otherwise, confidentiality can not be
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ensured. As another example, I once visited an organization that was in the busi-
ness of printing and mailing out lots of checks to individuals. Much to my shock,
their computer room was wide open. Here the threat is to integrity rather than
confidentiality. An adversary could exploit physical access to change the list of
recipients for the checks—an attractive proposition.

Before leaving this section of generalities and diving into technical specifics, I want
to return to the topic of adversaries. Adversaries can be outside your organization, but
they can also be inside. Either way, they may exploit technical vulnerabilities, mis-
use authority they have been granted, or engage in social engineering, that is, tricking
others who may have greater authority into cooperating. For this reason, I generally
use the word adversary rather than such alternative terms as intruder and cracker. The
word intruder implies an external adversary, and cracker implies one who uses technical
means. The largest danger is that if you use one of these terms, you may blind yourself
to significant threats. For example, protecting your organization’s network perimeter
may be a fine defense against intruders—but not against all adversaries.

Occasionally I will call an adversary an intruder or cracker, when appropriate.
However, I will never call one a hacker, contrary to what has become common usage.
Decades before crackers co-opted the word, it meant someone who had a deep, cre-
ative relationship with systems. Many of the technologies taken for granted today were
developed by people who described themselves as hackers. Today, I would no longer
dare call such a person a hacker outside a knowledgeable circle of old-timers, for fear of
being misunderstood. However, just because I no longer use the word in its traditional
sense does not mean I would use it for crackers.

11.3 User Authentication
You are probably most familiar with user authentication in a very basic form: log-
ging into a computer system using a password at the start of a session of usage. This
authentication mechanism suffers from several potentially serious weaknesses:

• Because the authentication takes place only at the beginning of the session, the
computer system at best knows who was seated at the keyboard then. No attempt
is made to notice whether you have walked away and someone else has taken your
place.

• Because you identify yourself by using something intangible (your knowledge of a
password), there is nothing to discourage you from sharing it with someone else.
You wouldn’t need to give up your own knowledge to let someone else also have it.
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• Similarly, someone can steal the password without depriving you of it, and hence
without drawing attention to themselves. As an example, if you have written the
password down, the adversary can copy it yet leave you your copy.

• Because the same password is used each time you log in, anyone who observes
you using it can then reuse it. This is true whether they physically observe your
typing (known as shoulder surfing) or use technical means to capture the password,
either with covert software on the computer where you are typing (a keylogger) or
with a network packet capture program (a sniffer). The use of network encryption
prevents sniffing but not the other techniques.

• Either the password is easy for you to remember, in which case it is also probably
easy for an adversary to guess, or you wrote it down, thereby exposing it.

In addition, there are several other pitfalls that, though not unavoidable, are common
in actual password systems:

• If you type in your password without the computer system having first authen-
ticated itself to you, then you could fall prey to a spoofing attack, in which the
adversary sets up a fake system to capture passwords and then presents them to
the real system.

• If the system checks your password by comparing it with a copy it has stored, then
any exposure of its storage would reveal your password and probably many others.

• If you have to choose your own passwords for many different systems and are
like most people, you will use the same password for several different systems.
This means any weakness in the security of one system, such as the use of stored
passwords, will spread to the others.

With such a long list of weaknesses, you can be sure that security specialists have
devised other means of authentication. I will discuss those in Section 11.3.4. Nonethe-
less, I would first like to explain how you can make the best of password authentication
because it is still widely used. I will start with the most avoidable weaknesses, which
are those listed most recently: spoofing, storing passwords, and choosing the same
passwords for several systems.

11.3.1 Password Capture Using Spoofing and Phishing
One form of spoofing attack is to write a program that puts the correct image on the
screen to look like a logged-out system prompting for username and password. Thus,
when someone comes up to the computer and sees what looks like a login screen, they
will enter their information, only to have it recorded by the program. The program
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can avoid detection by displaying a realistic error message and then logging itself out,
returning to the genuine login window. To defend against this version of a spoofing
attack, there needs to be something the genuine login window can do to authenticate
itself to users that no other program could do. Microsoft Windows can be configured to
take this approach by requiring users to press the CTRL+ALT+DEL key combination at
the start of a login. The reason Microsoft chose this combination is that Windows
allows programmers to draw anything at all to the screen and to respond to any
other key combination, but not that one particular key combination. Thus, so long
as Windows is running, you can be sure that CTRL+ALT+DEL is being responded to
by Windows itself, not by a spoofing program. The one hitch is that a spoofer could
have installed software other than Windows. To defend against that, you would need
to use physical security, which is important for other reasons anyhow.

Another style of spoofing has become more problematic lately. A web site may be
set up to look like a password-protected site, but really be in the business of captur-
ing the passwords. Users can be directed to the fake site using sophisticated network
manipulations, but more commonly they are simply tricked into accessing it using
a misleading email message, a technique known as phishing. One important counter-
measure in this case is user education. Users need to be much less credulous of emails
they receive.

However, there is also a technical dimension to the problem of web spoofing. As
described in Chapter 10, the SSL protocol used for encrypted web communication
allows your browser to verify the identity of the web server by using a public-key cer-
tificate. Spoofing is made much less likely if you type your password in only to web
pages that have authenticated themselves in this way. Unfortunately, some web site
designers are conditioning users to ignore this principle. These web sites use non-
SSL connections to display the form into which users type their passwords. The form
then submits the information back using SSL. The designers probably think all is well,
because the actual password transmission is SSL-encrypted. However, unless the user
looks at the HTML source of the web form, there is no way to be sure where the pass-
word will be sent. To protect against spoofing, the login form itself should be sent
using SSL. That way, the user will have seen the server’s authentication before typing
the password.

11.3.2 Checking Passwords Without Storing Them
To avoid storing passwords, a system should use a cryptographic hash function, such
as the SHA-1 function described in Chapter 9. Recall that these functions are designed
not to be easily invertible and in practice to essentially never have two inputs produce
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Figure 11.1 The system stores a cryptographic hash of the password when it is set, and compares
that with the hash of the attempted password. Because the hash function is collision-resistant, equal
hashes mean the password was almost surely correct. Because the hash function is difficult to invert,
disclosure of the stored hash codes would not reveal the passwords.

the same output. Therefore, the system can feed a newly chosen password through the
hash function and store the hash value. When a user tries to log in, the system feeds
the proffered password through the same hash function and compares the resulting
value with the stored hash code, as shown in Figure 11.1. If the two hash codes are
equal, then for all practical purposes the system can be sure the correct password was
entered. However, if the stored hash values are disclosed, no one can recover the pass-
words from them other than by trial and error. One cost to user convenience is that
the system cannot support a function to “remind me of my password,” only one to
“assign me a new password.” In most settings, that is a reasonable price to pay.

11.3.3 Passwords for Multiple, Independent Systems
In principle, you can easily avoid the problems stemming from using the same pass-
word on multiple systems. You just need to train yourself not to pick the same pass-
word for shopping on Sleazy Sam’s Super Saver Site as you use to guard your employer’s
confidential records. In practice, however, picking a new password for every system
would lead to an unmemorizable array of different passwords. Even one password
for each general category of system may be difficult. Therefore, an active area of
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development today is password wallet systems, which store a range of passwords under
the protection of one master password. The stored passwords constitute a security vul-
nerability; this vulnerability is hopefully not so severe as the alternatives.

Another technique that can help users cope with multiple systems also makes use
of a master password but does not use it to protect storage of individual passwords.
Instead, the individual passwords are generated algorithmically from the master pass-
word and the sites’ names. As an advantage compared with a password wallet, nothing
at all needs to be stored on the client machines. As a disadvantage, there is no easy
way to change the master password.

11.3.4 Two-Factor Authentication
Even if a system is designed and operated so as to avoid the pitfalls of spoofing, pass-
word storage, and password reuse, if it relies on password-controlled login as its sole
authentication method, it will still possess the more fundamental vulnerabilities listed
earlier. Some of those can be overcome with sufficient user education or mitigated in
other ways. For example, a system can be designed so as to issue passwords (or pass
phrases) that are random, and hence difficult to guess, but are constructed out of real
syllables or words so as to be easily memorizable—an example of psychological accept-
ability. To avoid problems with users walking away, a system can demand reentry of
the password before any particularly sensitive operation or after any sufficiently long
period of inactivity. All these countermeasures to password threats are valuable but still
leave something to be desired. Thus, I will turn now to other authentication methods.

Rather than relying on something the authorized user knows (a password), an
authentication mechanism can rely on something the user physically possesses, such
as a card or small plug-in device. These physical devices are generically called tokens.
The big problem with tokens is that they can be lost or stolen. Therefore, they are nor-
mally combined with passwords to provide two-factor authentication, that is, authen-
tication that combines two different sources of information. Another way to achieve
two-factor authentication is by combining either a password or a token with biometric
authentication, that is, the recognition of some physical attribute of the user, such as a
fingerprint or retinal pattern.

The most familiar two-factor authentication system is that used for bank auto-
mated teller machines (ATMs), in which you insert a card carrying a magnetic stripe
and also type in a four-digit personal identification number (PIN), which is essentially
a short password. Magnetic-stripe cards are rather weak tokens, because they carry
fixed information rather than engaging in a cryptographic authentication protocol
and because they are easily copied. However, in the ATM application, they provide
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sufficient security. In part, this stems from other aspects of the system design, such as
a limit on how much money a customer can withdraw in a day.

One important difference between biometric authentication and other techniques
is that it is inextricably tied with actual human identity. A password-protected or
token-protected account can be issued to a person known only by a pseudonym, and
it will never be possible to ascertain the true identity of the user. By contrast, even if a
biometric authentication user is initially enrolled without presenting any proof of true
identity (such as a passport), the user’s identity could later be deduced from match-
ing the fingerprint (or other biometric) with other records. This is both an advantage
and a disadvantage. Where the highest standards of accountability are necessary, it
can be advantageous. However, it also cuts into personal privacy. For many purposes,
pseudonymity is desirable, so that people can dissociate some portion of their life from
another unrelated, perhaps earlier, portion.

When a user logs in using biometric authentication, some physical device scans
the user’s fingerprint or other attribute and then transmits a digitally coded version
of the scan to a computer for checking. If an attacker can capture the digital version
and later replay it, the system’s security will be breached, just as would be the case
if a password were captured and replayed. One crucial difference, however, is that a
user can be issued a new password but not a new fingerprint. Therefore, the design of
any biometric authentication system needs to be particularly resistant to such replay
attacks.

Biometrics can be used for identification as well as authentication. That is, a user’s
physical attributes can play the role of a username (selecting a specific user) as well
as of a password (providing evidence that the selected user is actually present). How-
ever, biometric identification is a harder problem than biometric authentication, as it
requires searching an entire database of biometric information, rather than only the
information for a specific user. This broader search space increases the chance for error.
Therefore, the most reliable systems still require the user to enter some other identifier,
such as a textual username.

11.4 Access and Information-Flow Controls
In Chapter 7, I briefly made the distinction between Discretionary Access Control
(DAC), in which the creator or other “owner” of an object can determine access rights
to it, and Mandatory Access Control (MAC), in which organizational policy directly
governs the access rights. In that chapter, I then went into some depth on capabili-
ties and access control lists (ACLs), which are the two mechanisms commonly used
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to implement DAC. Therefore, I will now focus on MAC in order to round out the
picture.

The most well-developed MAC policies and mechanisms are geared to protecting
the confidentiality of information in national security systems, where formal policies
regarding the flow of information predated the introduction of computer systems. My
discussion in this section will be based on the policies of the United States govern-
ment, as is much of the published literature. The general principles, however, apply
equally well to other similar systems of information classification and user clearance.
In particular, after discussing government classification systems, I will briefly remark
on a currently popular application to commercial web servers. The goal there is to
limit the damage if an attacker achieves control over the web server.

The United States military sponsored research, particularly in the early 1970s, with
the goal of allowing a single computer system to be shared by principals operating
on data of varying sensitivity and running programs written by authors who are not
fully trusted. This sort of system is known as a Multi-Level Security (MLS) system. In this
context, the technical security mechanism must enforce information-flow control rather
than only access control. That is, the system must protect sensitive information from
indirect disclosure rather than only from direct access by unauthorized principals.

To appreciate the need for information-flow control in an MLS system, consider
the simplest possible system: one handling information of two different levels of sen-
sitivity. Suppose objects containing high-level information are labeled H and those
containing low-level (less sensitive) information are labeled L. There are some princi-
pals, those with H clearance, who may read and modify all objects. There are others,
with L clearance, who may only read L objects. So far, access control would suffice,
granting each class of principals access to specific objects. Now consider one further
requirement: an untrusted program run by an H principal must not be allowed to copy
data out of an H object and into an L object where an L principal could retrieve it.
Ideally, the program must also not leak the information any other way, though as you
will see, this is a challenging requirement. I can summarize the requirements by saying
that information initially contained in an H object must not flow to an L principal,
even through means other than the L user accessing the object.

Real MLS systems handle more than two categories of information. The informa-
tion is categorized in two ways. First, there is an overall classification level, indicat-
ing the degree to which disclosure could damage national security. In the United
States, four classification levels are used: unclassified, confidential, secret, and top
secret. (Technically, unclassified is not a classification level. However, it is handled
like a level below the lowest true classification level, which is confidential.) Second,
there are compartments, which indicate topics, such as nuclear weapons or interna-
tional terrorism. A principal may be cleared for access to data all the way up to top
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Figure 11.2 The classification levels top secret (T), secret (S), confidential (C), and unclassified (U)
form a total order, as shown on the left. Sets of compartments, on the other hand, form only a partial
order, namely the subset order in which one set of compartments is below another if it has a subset
of the other’s compartments. This is illustrated on the right with three hypothetical compartments:
nuclear weapons (N), international terrorism (I), and human intelligence (H). Someone cleared for
{I, H}, for example, could read documents labeled with {I, H}, {I}, {H}, or {}.

secret classification, but be limited to a specific compartment, such as nuclear weapons
only.

Each object is labeled with exactly one classification level but can be labeled with
any set of compartments because (for example) a document might concern the acqui-
sition of nuclear weapons by international terrorists. Figure 11.2 shows how each of
the two kinds of labels forms a partially ordered set, and Figure 11.3 shows how com-
bining them results in another partially ordered set, known mathematically as their
Cartesian product.

In a partial order, two elements may be ordered relative to one another, with x < y
or y < x, or they may be unordered. For example, {I} and {H} are unordered, because
neither is a subset of the other. In security applications, a principal with clearance p
is allowed to view information with label i only if p ≥ i, a condition known as p
dominating i in the partial order. This rules out disclosing information to principals
with too low a clearance level, but also to those who aren’t cleared for all the necessary
compartments.

Whenever an untrusted subject (that is, a process running an untrusted program)
has read from an object with label l1 and then modifies an object with label l2, an
unauthorized information flow may result unless l2 ≥ l1. That is, information is only
allowed to flow into an object whose consumers could all have directly accessed the
source information. Strictly speaking, the information flow results not from the mod-
ification of an l2 object after accessing the l1 object, but rather from the modification
of an l2 object based on the earlier access to the l1 object. However, it is extremely
difficult to test whether an earlier access has had some influence on a later modifica-
tion. In particular, the earlier access can have a subtle influence on whether the later



hailperin-163001 book December 6, 2005 11:47

11.4 Access and Information-Flow Controls ! 409

T, {N, I, H}
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Figure 11.3 Forming the Cartesian product of the two partial orders from Figure 11.2 results in
a 32-element partial order, each element of which pairs one of the four classification levels (T, S,
C, or U) with one of the eight sets of compartments (ranging from {N, I, H} down to {}). Of those
32 elements, only 11 are shown here in order not to clutter the diagram. What you should note in the
diagram is the definition of ordering in the Cartesian product: a pair (level1, compartments1) is above
(level2, compartments2) only if both level1 ≥ level2 and compartments1 ⊇ compartments2.

modification occurs, as well as an overt influence on the nature of that possible later
modification. Therefore, practical MLS systems generally take the simpler, more con-
servative approach of forbidding any subject from modifying an object that does not
dominate all previously accessed objects in the security label partial order.

The best-known information-flow control policy is known as the Bell-LaPadula
model, after the two MITRE Corporation researchers who developed it in the early
1970s.1 The key idea of the Bell-LaPadula model is to associate with each subject a
current level chosen by the principal running the subject process. The current level
must be dominated by the principal’s security clearance, but can be lower in the partial
order if the principal chooses. This flexibility to run at a lower current level allows a
principal to run subjects that modify low-level objects and other subjects that read
from high-level objects, but not to have any one subject do both. These restrictions

1. LaPadula’s name was spelled La Padula on the original publications and therefore is cited that way in
the end-of-chapter notes and the bibliography. However, in this section I will use the spelling LaPadula for
consistency with most published descriptions, as well as with LaPadula’s own current spelling of his name.
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are enforced by two rules, each based on a formal property from Bell and LaPadula’s
mathematical model, as follows:

• A subject running with current level c may read only from objects with level r such
that c dominates r , that is, c ≥ r . This corresponds to Bell and LaPadula’s simple
security property.

• A subject running with current level c may modify an object with level m only if m
dominates c, that is, m ≥ c. This can be derived from Bell and LaPadula’s *-property
(pronounced star-property), which prevents untrusted programs from transferring
information into inappropriate objects.

In order for these two rules to effectively regulate information flow, the Bell-
LaPadula model also includes tight restrictions on how a subject may change current
levels. In practical systems, the current level is selected when a principal logs in and
then is left unchanged until the principal logs out.

You can gain some appreciation for the role of untrusted subjects in the Bell-
LaPadula model by considering that a principal may be simultaneously logged in at
two adjacent terminals, one set to a high current level (as high as the principal is
allowed) and the other set to a low current level (unclassified, with no compartments).
The human principal may display highly sensitive material on one terminal and type it
into an unclassified file on the other. However, no untrusted subject (that is, no process
running an untrusted program) may do the same information transfer. The idea is that
the human principal is granted a high-level clearance only upon providing evidence
of trustworthiness. Moreover, the principal can be monitored to detect suspicious
meetings, an excess of cash, and other signs of corruption. The author of the untrusted
program, on the other hand, is beyond reach of monitoring, and the group of low-
clearance principals who could be reading the leaked data is too large to monitor.

Mandatory Access Control of the Bell-LaPadula variety can also be combined with
Discretionary Access Control using a mechanism such as access control lists. In fact,
Bell and LaPadula themselves recommended this. The underlying security principle is
Need-To-Know; that is, the possessor of sensitive information ought not to disclose it
to all principals of appropriately high clearance level, but rather only to those with a
specific need to know. Compartments provide a crude approximation to the Need-To-
Know principle, but many people cleared for a particular compartment will not have
a need to know any one specific document within that compartment. Therefore, it is
wise to give the owner of an object the ability to further restrict access to it using an
ACL. However, unlike in a pure DAC system, the ACL restrictions serve only to further
refine the access limits set by the simple security and *-properties. An otherwise cleared
subject may be denied access for lack of an appropriate ACL entry. However, adding an
ACL entry cannot grant access to a subject running at an inappropriate current level.
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Even with the Bell-LaPadula simple security and *-properties, an untrusted subject
may not be completely stopped from leaking sensitive information. Rather than leak-
ing the information through a file, network connection, or other legitimate storage or
communication object, the subject could disclose the sensitive information by way of
a covert channel. A covert channel is a mechanism not intended to be used for commu-
nication, but which can be manipulated by one subject and observed by another, thus
achieving communication. An example would be if a subject with access to highly
sensitive information varied the demands it placed on the CPU or disk based on the
sensitive information, and another subject, run at a lower clearance level, was able to
detect the changes in system utilization. Complete protection against covert channels
is impractical, but if processes’ resource utilization is tightly controlled, the risk can
be reduced.

Moving outside the area of military classification levels, one currently popular
MAC system is Security-enhanced Linux (SELinux), a version of the Linux kernel. This
system is quite flexible and can enforce a wide variety of rules regarding which objects
each subject can read and write. Objects are tagged with type labels, which are a gener-
alization of classification levels and compartments. Subjects are assigned to domains,
which are a generalization of clearance levels. One popular configuration tags the files
containing web pages with a specific label and assigns the Apache web server to a
domain that is allowed to read those files but not to write them nor to read any other
files. That way, even if an attacker can exploit some bug in the web server to obtain con-
trol over it and make it execute arbitrary code, it cannot leak confidential information
or damage the system’s integrity. This is an example of the principle of least privilege.

11.5 Viruses and Worms
As the Bell-LaPadula model and SELinux illustrate, security mechanisms need to limit
the actions not only of users, but also of programs. Limiting programs’ actions is
important because they may be under the control of untrusted programmers as well as
because they may have exploitable bugs that allow them to be misused. In this section,
I will address two particular kinds of adversarial programs, or malware, that pose espe-
cially widespread security threats. The common feature of viruses and worms, which
distinguish these two kinds of malware from garden-variety Trojan horses, is that one
of the actions they are programmed to take is to propagate themselves to other sys-
tems. Thus, an adversary can effectively attack all the computers on the Internet, not
by directly connecting to each one, but rather by attacking only a few initial systems
and programming each attacked system to similarly attack others. Through their sheer
ubiquitousness, viruses and worms constitute significant threats.



hailperin-163001 book December 6, 2005 11:47

412 ! Chapter 11 Security

Both worms and viruses strive to replicate themselves. The difference is in how
they do this. A virus acts by modifying some existing program, which the adversary
hopes will be copied to other systems and executed on them. The modified program
will then run the inserted viral code as well as the original legitimate code. The viral
code will further propagate itself to other programs on the infected system as well as
carrying out any other actions it has been programmed to perform. A worm, on the
other hand, does not modify existing programs. Instead, it directly contacts a target
system and exploits some security vulnerability in order to transfer a copy of itself
and start the copy running. Again, the worm can also be programmed to take other
actions beyond mere propagation. Even propagation alone can be a significant prob-
lem if carried out as fast as possible, because the rapid propagation of worm copies can
constitute a denial-of-service attack.

Viruses were a greater problem in the days when the major communication
channel between personal computers was hand-carried diskettes. As the Internet has
become dominant, worms have become the more common form of self-propagating
malware. However, because of the earlier prominence of viruses, many people inaccu-
rately use the word virus to refer to worms.

Any network-accessible vulnerability that a human intruder could exploit can in
principle be exploited by a worm in order to propagate. Historically, for example,
worms have used password guessing. Also, as mentioned in Chapter 7, email worms are
common today; these worms arrive as email attachments and are run by unwary users.
However, the most serious means of worm propagation has come to be the exploita-
tion of buffer-overflow vulnerabilities. Therefore, I will explain this common chink in
systems’ defenses.

Most programs read input into a contiguous block of virtual memory, known as
a buffer. The first byte of input goes into the first byte of the buffer, the second into
the second, and so forth. Often, the program allocates a fixed-size buffer rather than
allocating progressively larger ones as more and more input arrives. In this case, the
programmer must test the amount of input against the size of the buffer and take
some defensive action if an unreasonably large amount of input is presented, which
would otherwise overflow the buffer. Unfortunately, programmers perennially omit
this checking. Therefore, adversaries are perennially able to find programs that, when
presented with unusually large inputs, try to write the input data into addresses beyond
the end of the buffer. This is particularly problematic for network server programs,
which can be provided input by an adversary elsewhere on the Internet.

The consequences of a buffer overflow depend heavily on the programming lan-
guage implementation, operating system, and computer architecture. In modern
languages such as Java, any attempt to write past the end of an array is detected. Often,
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the detected error will cause the attacked server program to crash. In some cases, this
is victory enough for an adversary. However, it is minor compared with the damage
an adversary can do when exploiting a buffer overflow in a program written using
more primitive technology, such as typical implementations of the programming lan-
guage C. In those settings, the extra input data may be written to addresses beyond
the end of the buffer, overwriting other data assigned to those later addresses.

One possible tactic an adversary could use is to look for a server program in which
a buffer is followed by some particularly sensitive variable, such as a Boolean flag
indicating whether a password has been successfully checked yet. However, buffer-
overflow exploits typically take a different approach, which allows the adversary to
inject entirely new instructions for the process to execute, which it ordinarily would
not even contain. In this way, the server process can be made to take any action what-
soever, within the limits of the authority it has been granted. This an extreme example
of misalignment between authority and control.

To understand how a buffer overflow can lead to the execution of arbitrary code,
you need to consider some facts about typical runtime stacks, which are described in
Appendix A. Often, program variables such as buffers are allocated their space within
the stack. The stack also typically contains the return address for each procedure invo-
cation, that is, the address of the instruction that should be executed next when the
procedure invocation returns. If the stack grows downward in virtual memory, expand-
ing from higher addresses down into lower ones, then the return address will follow
the buffer, as shown in Figure 11.4(a).

In this circumstance, which arises on many popular architectures, a buffer overflow
not only can overwrite data values, as shown in Figure 11.4(b), but also can overwrite
the return address, as shown in Figure 11.4(c). This form of buffer overflow is com-
monly called smashing the stack. When the current procedure invocation completes,
the overwritten return address causes the processor to jump to an adversary-specified
instruction address. On its own, this would allow the adversary only to choose which
existing code to execute. However, when taken together with one other factor, it pro-
vides the means to execute code provided by the adversary.

Many architectures and operating systems provide virtual memory mechanisms
that allow each page of virtual memory to be independently read-protected or write-
protected, but that do not allow a distinction between reading data and fetching
instructions. In this circumstance, the pages holding the stack, which need to be read-
able for data, can also contain executable code—even though extremely few programs
legitimately write instructions into the stack and then jump to them.

An adversary can exploit this situation by writing a large input that not only
overflows the buffer and overwrites the return address, but also contains the bytes
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Figure 11.4 If input is allowed to overflow the amount of memory allocated on the stack for an
input buffer, it can overwrite other data values, as shown in part (b), or the return address, as shown
in part (c). In the latter case, the modified return address can point to attack code included in the
oversized input.

constituting the adversary’s choice of machine language instructions. These machine
language instructions are labeled as attack code in Figure 11.4(c). The overwritten
return address is used to jump into the buffer itself, thereby executing the provided
instructions.

Because these exploits are so prevalent, there has been considerable interest re-
cently in modifying virtual memory mechanisms so as to allow stack space to be
readable (and writable) but not executable. Other than techniques such as this for
preventing malware from entering, the major countermeasure has been the use of
antivirus scanning programs, which commonly scan for worms as well. These pro-
grams look for distinctive patterns of bytes, known as signatures, found in known
viruses and worms. As such, scanners need to be frequently updated with signatures
for newly emerging threats.

11.6 Security Assurance
Organizations directly influence their systems’ security through the manner in which
the systems are installed and operated, as well as through the design of components
developed in-house. However, the organizations also exercise more indirect control
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by choosing to procure security-critical components from vendors that demonstrate
that the components are suited to the organizations’ needs. In this section, I will
explain how this kind of security assurance is provided by vendors and interpreted by
consumers. The component in question may be an operating system, middleware sys-
tem, or a network device such as a firewall or intrusion detection system, among oth-
ers. In the security assurance field, any of these may be referred to as a Target of Eval-
uation (TOE), because the assurance derives from an independent evaluation of how
well the TOE satisfies stated security requirements.

The assurance of security-related products is governed by an international stan-
dard called the Common Criteria, because it was developed to harmonize previously
independent national standards. The Common Criteria are also sometimes known by
their International Standards Organization number, ISO 15408. The Common Criteria
define a process in which a vendor contracts with a qualified independent assessor to
evaluate how well a product meets a set of security requirements known as a Security
Target (ST).

Each ST is an individual requirements document specific to the particular pro-
duct under evaluation, that is, specific to the TOE. However, because consumers can
more easily compare products whose STs share a common basis, the STs are built
in a modular fashion from common groups of requirements. A published group of
requirements, intended to be used as the basis for multiple STs, is called a Protection
Profile (PP).

Just as STs are built from standard PPs, each PP is assembled by choosing from a
standard menu of potential requirements. Extra custom requirements can be added at
either stage, but the bulk of any ST’s requirements will come from the standard list
by way of one of the standard PPs. Thus, consumers are in a better position to learn
their way around the landscape of potential requirements. This is critical, because a
product certified by an independent assessor to meet its ST is worthless if that ST does
not contain requirements appropriate to a particular consumer’s needs.

The requirements contained in PPs and STs fall into two general categories: func-
tional requirements and assurance requirements. An example of a functional require-
ment would be a mandate for a spoofing-resistant login method. (Microsoft Windows
would satisfy this requirement, using CTRL+ALT+DEL.) An example of an assurance
requirement would be a mandate that detailed design documents, testing reports, and
samples of security-critical code be reviewed by outside evaluators.

The assurance requirements are summarized by a numerical Evaluation Assurance
Level (EAL), in the range from EAL1 to EAL7. For example, an ST based on EAL4 will
contain moderately rigorous demands regarding the evidence that the system actually
meets its functional requirements, but none that go beyond ordinary good develop-
ment practices outside the security field. At EAL5 and above, specific security-oriented
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EAL Rubric
EAL1 functionally tested
EAL2 structurally tested
EAL3 methodically tested and checked
EAL4 methodically designed, tested, and reviewed
EAL5 semiformally designed and tested
EAL6 semiformally verified design and tested
EAL7 formally verified design and tested

Figure 11.5 This table shows brief rubrics for the Common Criteria Evaluation Assurance Levels;
expanded descriptions are available in the Common Criteria documentation.

assurance practices need to be incorporated into the development process, including
progressively increasing use of semiformal and formal methods. Figure 11.5 gives a
brief rubric for each EAL, taken from the Common Criteria documentation.

Although each EAL includes a whole package of sophisticated assurance require-
ments, the EALs can be easily understood in a comparative way: a higher-numbered
EAL is stricter. This makes it tempting to focus on the EALs. However, you need to
remember that an EAL, even a very strict one, tells only how thorough a job the vendor
has done of demonstrating that the TOE meets the functional requirements that are
in the ST. It tells nothing about how demanding those functional requirements are.
More importantly, the EAL tells nothing about how well-matched the requirements
are to your needs.

As an example, Microsoft contracted for a Common Criteria evaluation of one par-
ticular version of Windows, relative to an ST that included the assumption that the
only network connections would be to equally secure systems under the same man-
agement and that all authorized users would be cooperative rather than adversarial.
Thus, it gave no indication how well the system would fare if confronted with seri-
ous adversaries, either within the user population or out on the Internet. These issues
arise from the functional requirements in the ST, completely independent of the EAL.
Figure 11.6 shows the relevant language from Microsoft’s ST.

The weakness of these small excerpts from one particular ST may leave you won-
dering about the value of the Common Criteria process. The lesson you should take
away is not that the Common Criteria process is worthless, but rather that it relies
upon educated consumers. To benefit from the process, you need to understand its
vocabulary, such as what the difference is between an EAL and an ST.
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• Any other systems with which the TOE communicates are
assumed to be under the same management control and oper-
ate under the same security policy constraints. The TOE is
applicable to networked or distributed environments only if
the entire network operates under the same constraints and
resides within a single management domain. There are no
security requirements that address the need to trust external
systems or the communications links to such systems.

• Authorized users possess the necessary authorization to access
at least some of the information management [sic] by the TOE
and are expected to act in a cooperating manner in a benign
environment.

Figure 11.6 These excerpts are from the Windows 2000 Security Target, ST Version 2.0, 18 Octo-
ber 2002, prepared for Microsoft Corporation by Science Applications International Corporation.

11.7 Security Monitoring
System operators have at least three reasons to monitor for attacks, both successful
and unsuccessful:

• By gaining a better understanding of adversaries’ behavior, you can develop better
countermeasures.

• By putting adversaries on notice that you may gather enough evidence to allow
successful prosecution or other punishment, you may deter attacks. This tends to
work better against adversaries within your organization than against adversaries
on the other side of the Internet. You should coordinate in advance with legal
counsel on appropriate policies and notices.

• By quickly detecting a successful attack, you can limit the damage, and by obtain-
ing accurate information about the extent of the damage, you can avoid overly
conservative responses, such as reinstalling software on uncompromised systems.
Overly conservative responses not only take time and money, they also require
system downtime. Thus, an overly conservative response magnifies the damage
done by an attack.

For all these reasons, security professionals have been very active in developing
monitoring techniques. I already mentioned one in Chapter 9, namely network
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intrusion detection systems (IDSes). Others that I will summarize here include robust
logging facilities, integrity checking software, and honeypots.

Intrusion detection systems are perhaps best thought of as anomaly detectors for
network traffic. Many IDSes can be configured to spot anomalous traffic even if it
results from an adversary internal to your network, rather than an intruder. Thus,
the name IDS is somewhat misleading. An IDS may look for specific attack signa-
tures or may respond to deviations from past patterns of activity. For example, if a
normally quiet desktop machine starts spewing out UDP packets at the maximum
rate the network can carry (as it would if infected with the SQL Slammer worm), even
an IDS that had no signature for the specific worm ought to raise a warning about the
sudden traffic.

Other anomalous events may be detected internal to a particular system, rather
than in network traffic. For example, an operating system may be programmed to
note repeated failed attempts to log in as the system administrator, which could con-
stitute a particularly dangerous password-guessing attack, worthy of notice even if
unsuccessful. These sorts of anomalies are routinely logged by systems into a chrono-
logical event log, which can be used to reconstruct a break-in after the fact as well
as serving as a source to drive real-time alerts. The biggest technical challenge is that
a successful attack may give the adversary the necessary access privileges to clean up
the log, covering traces of the attack. High-security systems therefore use append-only
logging devices. Log entries can also be sent over the network to a centralized, heavily-
protected logging server.

Another non-network monitoring approach is to periodically check the integrity
of a system’s configuration, such as whether any of the system programs have been
modified. Successful attackers will frequently modify programs or configuration files
so as to give themselves a back door, that is, a second way in to use even if the initial
vulnerability is fixed. Thus, a periodic check may turn up signs of a successful break-in
since the previous check, even if the break-in was sufficiently stealthy to otherwise go
unnoticed.

In addition to periodic checks, the same integrity checking can be done after
any break-in that comes to notice through other means. Without integrity check-
ing, a system administrator has little choice but to treat the whole system as com-
promised, scrub it clean, and reinstall from scratch. Thus, integrity checking not only
allows successful attacks to be detected, it also guides the mounting of an appropriate
response.

An example of an integrity monitoring system is Tripwire. The basic principle of
operation is that a cryptographic hash of each critical file is computed and stored
in a tamper-resistant database, such as on a CD that is writable only once. The Trip-
wire program itself is also stored in tamper-resistant form. To check the system, the
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known-good copy of Tripwire recomputes the cryptographic hashes and compares
them with the stored copies.

The final form of security monitoring I will mention is the use of honeypots. A
honeypot is a decoy system used specifically to monitor adversaries. It is configured
to appear as realistic as possible but is not used for any genuinely valuable purpose
other than monitoring. It is subject to extreme but clandestine monitoring, so as to
fully record adversaries’ behavior but not tip them off. Because no legitimate user will
ever have reason to connect to the honeypot, the monitoring can be comprehensive—
no anomaly detection filtering is needed to distinguish legitimate traffic from attack
traffic.

By letting an adversary take over the system, rather than immediately repelling the
attack, you can learn more about the attack techniques beyond the initial connection
and thus learn more about vulnerabilities you need to repair on other systems, as well
as other countermeasures you need to take. However, because the adversary is allowed
to take over the honeypot, it must be thoroughly firewalled against outbound attacks
so that you don’t provide the means to launch attacks on further systems. Humans
should also monitor the honeypot continuously and be ready to intervene. These
considerations help explain why honeypots, although quite in vogue, are best left to
large organizations with experienced security professionals. Smaller organizations can
still benefit because honeypots largely provide epidemiological evidence about what
worms are circulating, which can serve the whole Internet community.

11.8 Key Security Best Practices
Appropriate security practices depend on many factors, including whether you are
defending your home computer or an employer’s high-value system and whether you
are engaging in custom application-software development or only procuring, installing,
configuring, and operating existing systems. However, I will attempt a unified list of
best practices with the understanding that some may be more applicable than others
to any one context:

• Consult others. Everybody, even home users, should at least read the web site of the
SANS (SysAdmin, Audit, Network, Security) Institute, http://www.sans.org. Organi-
zations should also hire reputable consultants, as well as engage in conversations
with legal counsel, those responsible for noncomputer security, and the human
resources department.

• Adopt a holistic risk-management perspective. Consider how much you have to
lose and how much an adversary has to gain, as well as how likely an adversary is
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to be caught and punished. Are any of these factors more manipulable than the
inherent vulnerability of your system?

• Deploy firewalls and make sure they are correctly configured. The best approach
combines hardware firewalls guarding organizational and workgroup perimeters
with software firewalls guarding individual machines. Even a home can use this
approach, often with a NAT router serving as the hardware firewall.

• Deploy anti-virus software. An organization should have server-based software
that scans all incoming email so as not to be at risk should an individual client
machine fail to scan. However, the individual client machines should also have
protection for defense in depth and in particular to guard against infections that
sneak past the network perimeter by being carried in on a portable computer or
storage device.

• Keep all your software up to date. This includes not only system software such as
the operating system, but also any application software that may be exposed to
data from the network. Today, that includes nearly everything.

• Deploy an IDS, integrity checking software such as Tripwire, and a robust logging
platform. These steps are not very practical for typical home users yet.

• Assume all network communications are vulnerable; use end-to-end encryption
rather than relying on the security of network infrastructure. The same principle
applies if storage media are physically shipped between locations.

• Use two-factor user authentication, as described in Section 11.3.4.

• Maintain physical security over computer equipment and be vigilant of service
personnel or others with extraordinary physical access.

• Do what you can to stay on good terms with employees and to part from them
cleanly. When hiring for particularly sensitive positions, such as system adminis-
trators, candidly disclose that you will be checking background and do so. Establish
realistic expectations that do not encourage people to work nights or weekends
when no one else is around. Have employees cross-train one another and take
vacations.

• Establish and clearly communicate policies on acceptable use and on monitoring.

• Beware of any security-relevant phone calls and emails that you do not originate,
as well as of storage media that arrive by mail or courier. A “vendor” with a crit-
ical patch you need to install could be a con artist. The same is true of a law-
enforcement agent or a member of your organization’s upper management; being
cooperative should not preclude taking a minute to politely confirm identity and
authority.
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• Examine closely any case where the user whose authority is exercised by a process
is not the same as the user who controls the process’s actions:
– If at all possible, never run a program from an untrusted source. Failing that,

run it with the least possible authority and the greatest possible monitoring.
– If you need to write a setuid program, check very carefully what it does with all

user input. Might any buffer overflow? Might any input be interpolated into a
shell command or otherwise allowed to exert control? Did a programmer insert
an intentional “trapdoor,” whereby a particular input can trigger the program
to bypass normal security controls? Are there any TOCTTOU races? Also, have
the program owned by a special-purpose user account that is granted only the
necessary authority. More generally, review the principles listed in Section 11.2.

– Examine any program that communicates over the network according to the
exact same standards as a setuid program.

Exercises
11.1 To keep certain individuals from flying on commercial airliners, a list is main-

tained that airlines must check before issuing a boarding pass. The pass may be
issued over the web, as well as at the airport. The pass must be presented to a
human at the airport along with an identifying document. The human, who
uses no computer technology, checks that the name on the pass matches that
on the identifying document and that the photo on the identifying document
matches the appearance of the person presenting it. This check is done at the
perimeter of the secured portion of the airport as an admission condition. You
may assume that identifying documents are hard to forge and that getting past
the perimeter control without going through the check is difficult.
(a) How could an adversary get admitted to the secure area despite being on

the no-fly list?
(b) Is the vulnerability you identified in part (a) one that could be explained by

inattention to any of the security principles listed in Section 11.2?
(c) Can you design a countermeasure to deter the exploitation of the vulnera-

bility you identified? Would the use of additional computer technology help
you do so without sacrificing desirable properties of the current system?

11.2 An organization’s checks are preprinted with a statement that checks for $100
or more require a handwritten signature, whereas smaller checks are valid with
a printed signature. How is this explainable in terms of the general principles
of security enumerated in Section 11.2?
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11.3 Section 11.2 contains a long list of general security principles. For each of the
following audiences, suppose you had time to explain only a few of the princi-
ples. Which few would you explain? Why?
(a) software developers designing and programming new systems
(b) information technology staff who will be purchasing, configuring, and

administering systems
(c) the Chief Information Officer, who is the executive supervising both of the

above groups

11.4 Another weakness of password security is that there is always an administrator
to whom a user can turn upon forgetting a password. That administrator has the
ability to reset the password. This person may be gulled by a con artist (who tells
a pitiful tale of woe) into resetting a password without first authenticating
the user in some alternate manner, for example, by using a photograph on an
ID card.
(a) What is the name for the general category of threat of which this is an

example?
(b) Even if the human customer-service staff can’t be stopped from resetting

passwords like this, the system can be programmed to print out a letter
acknowledging the password change, which is mailed by ordinary postal
mail to the registered address of the user. Why would this enhance security,
even though it wouldn’t prevent the adversary from obtaining access?

11.5 What is two-factor authentication? Give an example.

11.6 Why should a blank web form to be filled in with a password be downloaded to
the browser via SSL, rather than using SSL only to send the filled-in form back
to the server?

11.7 Draw the following partially ordered sets:
(a) One based on the subset ordering for sets of compartments, as in Figure 11.2

on page 408, but using only the N and I compartments.
(b) The full Cartesian product of your answer from part (a) and the total order-

ing of {T, S, C, U}. Unlike Figure 11.3 on page 409, no elements should be
left out.

11.8 Figure 11.7 shows the full 32-element Cartesian product of the 4-element and 8-
element partial orders shown in Figure 11.2 on page 408. However, the elements
are not labeled with their security classification levels and sets of compartments;
instead, they are shown just as circles. What should the labels be for the eight
circles shown in black? (Note that this diagram is arranged differently than the
11-element excerpt in Figure 11.3 on page 409. Do not expect to find those
11 elements in the same positions here.)
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Figure 11.7 This is an unlabeled version of the Cartesian product of the partial orders shown in
Figure 11.2 on page 408.

11.9 Using the Bell-LaPadula model, with the compartments {N, I, H} and classifica-
tion levels {T, S, C, U}, which of the following statements are true?
(a) A subject with current level C and compartments N and H may read from

an object with level C and compartments N and H.
(b) A subject with current level C and compartments N and H may read from

an object with level C and compartment N.
(c) A subject with current level C and compartments N and H may read from

an object with level C and compartments N, I, and H.
(d) A subject with current level C and compartments N and H may read from

an object with level C and compartments N and I.
(e) A subject with current level C and compartments N and H may read from

an object with level S and compartments N and H.
(f) A subject with current level C and compartments N and H may read from

an object with level S and compartment N.
(g) A subject with current level C and compartments N and H may read from

an object with level S and compartments N, I, and H.
(h) A subject with current level C and compartments N and H may read from

an object with level U and no compartments.
(i) A subject with current level C and compartments N and H may write into

an object with level C and compartments N and H.
(j) A subject with current level C and compartments N and H may write into

an object with level C and compartment N.
(k) A subject with current level C and compartments N and H may write into

an object with level C and compartments N, I, and H.
(l) A subject with current level C and compartments N and H may write into

an object with level C and compartments N and I.
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(m) A subject with current level C and compartments N and H may write into
an object with level S and compartments N and H.

(n) A subject with current level C and compartments N and H may write into
an object with level S and compartment N.

(o) A subject with current level C and compartments N and H may write into
an object with level S and compartments N, I, and H.

(p) A subject with current level C and compartments N and H may write into
an object with level U and no compartments.

11.10 In the Bell-LaPadula model, under what conditions may a subject read from an
object and then modify the object to contain new information that is derived
from the old?

11.11 Why, in the Bell-LaPadula model, is it important that a principal can run a
subject at a current security level below the one the principal is cleared for?

11.12 In the Bell-LaPadula model, a subject running at a high current level may read
from an object that is labeled with a lower level. In a system with readers-
writers locks, this could block a subject running at a lower level from writing the
object. Explain why this could compromise the design goals of the Bell-LaPadula
model.

11.13 Viruses have historically been a problem primarily on systems designed with lit-
tle regard for the principle of least privilege. Explain why this would be expected.
Keep in mind the distinction between viruses and worms.

11.14 A Common Criteria assessment includes inspection not only of the system design
and code, but also of documentation intended for system administrators and
users. Why is this relevant?

11.15 Explain the difference in the Common Criteria between a PP, an ST, and an EAL.

11.16 Is a system certified at a high EAL necessarily more secure than one certified at
a low EAL? Explain.

11.17 Distinguish honeypots from IDSes.

11.18 Why should the code of network server programs be audited for correct pro-
cessing of received input in the same way a setuid program’s processing of user
input is audited?

Programming Projects
11.1 Write a program that runs all strings of six or fewer lowercase letters through

a library implementation of SHA-1. Report how long your program takes, with
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enough details of the hardware and software context that someone could
approximately replicate your result.

Consider the system shown in Figure 11.1 on page 404 in which the hash
function can be SHA-1. The point of this system is to increase an adversary’s
work factor if the stored value is disclosed. Based on your experiment, you
should have some indication of how much the work factor increases by, given
an assumption that users pick passwords of the sort your program checked.
Under what sorts of circumstances would this increase in work factor be
sufficient?

11.2 On a Linux system, you can read cryptographically-strong random bytes from
/dev/random and can generally read a list of words (one per line) from a file
such as /usr/share/dict/words. Other systems are likely to have similar
information available. Write a program that randomly chooses four words, each
of which is four letters long, and prints them out with hyphens between them
to serve as a passphrase. For example, you might get the output mean-chef-
pour-pubs. On the Linux distribution on my computer, there are 2236 four-
letter words. How many four-word passphrases can be formed from them? How
long would a random string of lowercase letters need to be to have a comparable
number of possibilities? Which seems to be more memorizable?

Exploration Projects
11.1 User authentication systems are successfully attacked all the time, usually with-

out generating much publicity. However, when the user in question is a celebrity,
the newspapers sit up and take notice. Write a summary of a user-authentication
failure involving Paris Hilton in February of 2005. Your sources should include
at least the article that month by Brian McWilliams in MacDev Center as well
as the article by Brian Krebs in the May 19, 2005, issue of The Washington Post;
both articles are cited in the end-of-chapter notes. As these articles contain con-
tradictory information, presumably they should be taken with a grain of salt.
Nonetheless, are there any lessons you can draw, both for designers of authen-
tication systems and for users?

11.2 The website http://www.sans.org contains a list of top-twenty vulnerabilities. Look
at the information given on how to remedy each problem. How many of these
correspond to the best practices listed in this chapter?

11.3 Research and write a paper about the role that Trojan horses reportedly played
in a 2004 unauthorized access to Cisco Systems and in a 2005 unauthorized
access to LexisNexis’s Seisint unit. In the first, the Trojan horse was reportedly a
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version of the ssh program, whereas in the second, the Trojan horse reportedly
masqueraded as a display of nude photos of a teenage girl. Setting that difference
aside, what commonality and what other differences can you find in the way the
two attacks worked? What more general lessons for computer system security
can be gained from these two incidents?

11.4 Most UNIX and Linux systems include a program called sudo. Read the doc-
umentation for it on your system or on the web at http://www.sudo.ws. Write
a description of how this program’s design reflects several of the principles
explained in this chapter.

Notes
The single most important source of practical information about security is
http://www.sans.org. There are also a number of good books on practical security mat-
ters, such as those by Garfinkel, Spafford, and Schwartz [55]; Cheswick, Bellovin, and
Rubin [29]; and Northcutt et al. [97].

Saltzer and Schroeder presented most of Section 11.2’s general security principles
in their 1975 tutorial paper [111]. That paper also described capabilities and access
control lists, along the lines of Chapter 7’s presentation.

One example of a system that generates multiple passwords from a single master
password was described by Ross et al. [108].

The Bell-LaPadula model was described by Bell and La Padula in a series of MITRE
Corporation technical reports in the early 1970s. Their best summary is in a later
“unified exposition,” which was also published only as a technical report [13]. A more
sophisticated, but less influential, information-flow model was published by Dorothy
Denning [39]. Both of these and other formal models were surveyed by Landwehr [86].
The problem of covert channels was described by Lampson [84]. Another important
survey of the state of security research in the highly-productive 1970s was published
by Dorothy and Peter Denning [40].

I mentioned that although most buffer-overflow attacks overwrite return addresses,
an attacker could instead arrange to overwrite some security-critical variable, such as
a Boolean flag used to control access. Chen et al. [28] showed that such attacks are in
fact realistic, even if not currently popular. As defenses are put in place against current-
generation stack-smashing attacks, these alternate forms of attack are likely to gain in
popularity.

Information about the Common Criteria is available from http://www.
commoncriteriaportal.org. A good overview is in the introductory document [125]. The
specific ST that I use for illustration is the one for Windows 2000 [113]. It was also
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used by Shapiro to make similar points about the importance of functional require-
ments [117].

Exploration Project 11.1 mentions a user authentication failure involving Paris
Hilton. Many published accounts at the time included some information about the
attack; the one specifically mentioned in the project assignment is by McWilliams [94].
Information about the attack seems to have shifted over time; the project assignment
also mentions an article a few months later by Krebs [82].


