
!"#$%&'()*+,-&#.-*%(/*0'//1#2%$#3*+4""5$&'()*65(&$511#/*7(&#$%8&'5(

9,*0%:*;%'1"#$'(

<=#*85..#$8'%11,*"491'-=#/*>#$-'5(*5?*&='-*25$@*A7+BC*DEFGHEHIGJKELM*2%-*65",$')=&*N*IDDO*9,*<=5.-5(*654$-#*

<#8=(515),P*%*/'>'-'5(*5?*<=5.-5(*Q#%$('()P*7(8RP*"4$-4%(&*&5*%(*%--')(.#(&*5?*$')=&-*?$5.*&=#*%4&=5$R

<='-*?$##*$#E$#1#%-#*'-*65",$')=&*N*IDDFEIDSD*9,*0%:*;%'1"#$'(P*"4$-4%(&*&5*%(*%--')(.#(&*5?*&=#*$')=&-*9%8@*&5*='.*9,*

654$-#*<#8=(515),P*%*/'>'-'5(*5?*6#()%)#*Q#%$('()P*7(8RP*-488#--5$E'(E'(&#$#-&*&5*&=#*"491'-=#$R**T')=&-*&5*'114-&$%&'5(-*

$#(/#$#/*9,*&=#*"491'-=#$*2#$#*%1-5*%--')(#/*9,*654$-#*<#8=(515),*&5*0%:*;%'1"#$'(*%(/*&=5-#*'114-&$%&'5(-*%$#*'(814/#/*'(*

&=#*1'8#(-#*=#*)$%(&-*?5$*&='-*?$##*$#E$#1#%-#R

<='-*25$@*'-*1'8#(-#/*4(/#$*&=#*6$#%&'>#*65..5(-*U&&$'94&'5(E+=%$#U1'@#*GRD*V('&#/*+&%&#-*Q'8#(-#R*<5*>'#2*%*85",*5?*&='-*

1'8#(-#P*>'-'&*=&&"3WW8$#%&'>#85..5(-R5$)W1'8#(-#-W9,E-%WGRDW4-W*5$*-#(/*%*1#&&#$*&5*6$#%&'>#*65..5(-P*SOS*+#85(/*+&$##&P*

+4'&#*GDDP*+%(*X$%(8'-85P*6%1'?5$('%P*KHSDFP*V+UR

<=#*?$##*$#E$#1#%-#*2%-*"$#"%$#/*?$5.*?'(%1*"%)#*"$55?-*%(/*-=541/*9#*85."1#,*'/#(&'8%1*&5*&=#*85..#$8'%11,*"491'-=#/ *

>#$-'5(R**7(*"%$&'841%$P*%11*&=#*#$$%&%*1'-&#/*5(*&=#*2#9*-'&#*-&'11*%""1,R**A<=#*%4&=5$*'(&#(/-*&5*$#1#%-#*-49-#Y4#(&*>#$-'5(-*&=%& *

'(85$"5$%&#*&=#*85$$#8&'5(-*%-*2#11*%-*4"/%&#-*%(/*'."$5>#.#(&-R**+49-#Y4#(&*>#$-'5(-*.%,*%1-5*9#*'(*%*.5$#*#%-'1, *

.5/'?'%91#*?5$.*&5*#(854$%)#*"%$&'8'"%&'5(*9,*5&=#$*85(&$'94&5$-R**Z1#%-#*#.%'1*-4))#-&'5(-*&5*.%:[)4-&%>4-R#/4RM

6$#/'&-*?$5.*&=#*85..#$8'%11,*"491'-=#/*>#$-'5(3

+#('5$*Z$5/48&*0%(%)#$3*U1,--%*Z$%&&

0%(%)'()*\/'&5$3*0%$,*X$%(]

^#>#15".#(&*\/'&5$3*_'11*B%&'-&'8@

+#('5$*0%$@#&'()*0%(%)#$3*`%$#(*+#'&]

U--58'%&#*Z$5/48&*0%(%)#$3*_#(('?#$*+.'&=

\/'&5$'%1*U--'-&%(&3*U11'-5(*04$"=,

+#('5$*0%(4?%8&4$'()*655$/'(%&5$3*_4-&'(*Z%1.#'$5

65>#$*^#-')(#$3*^#95$%=*a%(T55,#(

65."5-'&5$3*7(&#$%8&'>#*65."5-'&'5(*65$"5$%&'5(

hailperin-163001 book October 18, 2005 11:18

Processes and
Protection

C H A P T E R

7

7.1 Introduction
At this point, having seen both the threads that perform computations and the virtual
memory spaces in which those computations take place, you are finally prepared to
synthesize the notion of process. Processes play a central role in the view of an operating
system as experienced by most system administrators, application programmers, and
other moderately sophisticated computer users. In particular, the technical concept of
process comes the closest to the informal idea of a running program.

The concept of process is not entirely standardized across different operating sys-
tems. Not only do some systems use a different word (such as “task”), but also the
details of the definition vary. Nonetheless, most mainstream systems are based on
definitions that include the following:

One or more threads Because a process embodies a running program, often the proc-
ess will be closely associated with a single thread. However, some programs are
designed to divide work among multiple threads, even if the program is run only
once. (For example, a web browser might use one thread to download a web page
while another thread continues to respond to the user interface.)

Virtual memory accessible to those threads The word “accessible” implies that
some sort of protection scheme ensures that the threads within a process access

! 220 "

hailperin-163001 book October 18, 2005 11:18

7.1 Introduction ! 221

only the memory for which that process has legitimate access rights. As you will
see, the mainstream protection approach is for each process to have its own virtual
memory address space, shared by the threads within that process. However, I will
also present an alternative, in which all processes share a single address space, but
with varying access rights to individual objects within that address space. In any
case, the access rights are assigned to the process, not to the individual threads.

Other access rights A process may also hold the rights to resources other than mem-
ory. For example, it may have the right to update a particular file on disk or
to service requests arriving over a particular network communication channel.
I will address these issues in Chapters 8 and 9. For now, I will sketch two general
approaches by which a process can hold access rights. Either the process can hold
a specific capability, such as the capability to write a particular file, or it can hold
a general credential, such as the identification of the user for whom the process is
running. In the latter case, the credential indirectly implies access rights, by way
of a separate mechanism, such as access control lists.

Resource allocation context Limited resources (such as space in memory or on disk)
are generally associated with a process for two reasons. First, the process’s termina-
tion may serve to implicitly release some of the resources it is holding, so that they
may be reallocated. Operating systems generally handle memory in this way. Sec-
ond, the process may be associated with a limited resource quota or with a billing
account for resource consumption charges. For simplicity, I will not comment on
these issues any further.

Miscellaneous context Operating systems often associate other aspects of a running
program’s state with the process. For example, systems such as Linux and UNIX
(conforming to the POSIX standard) keep track of each process’s current working
directory. That is, when any thread in the process accesses a file by name without
explicitly indicating the directory containing the file, the operating system looks
for the file starting from the process’s current working directory. For historical
reasons, the operating system tracks a single current working directory per process,
rather than one per thread. Yet this state might have been better associated with
the individual threads, as it is hard to see why a change-directory operation in one
thread should upset file operations underway in another concurrently running
thread. Because there is no big master narrative to these items of miscellaneous
context, I won’t consider them further in this chapter.

From this list, you can see that many of the key aspects of processes concern protec-
tion, and these are the aspects on which I will focus. Before diving into a consideration
of various approaches to protection, however, I will devote Section 7.2 to the basics of
how the POSIX process management API can be used, such as how a thread running in

hailperin-163001 book October 18, 2005 11:18

222 ! Chapter 7 Processes and Protection

one process creates another process and how a process exits. This section should serve
to make the use of processes more concrete. Studying this API will also allow you to
understand how the shell (command interpreter) executes user commands.

After studying the basics of POSIX process management, you will spend the remain-
ing sections of the chapter learning various aspects of protection. Keep in mind that
protection is a large and diverse area; although I will introduce several different pro-
tection mechanisms in this chapter, I will leave many topics for later chapters. I post-
pone some protection questions specific to file systems to Chapter 8. Also, protection
is intimately related to security, which I cover in Chapter 11. In particular, my empha-
sis here will be on basic mechanisms. I will defer to Chapter 11 all questions of how
those mechanisms are deployed to enforce chosen security policies.

I will divide this current chapter’s treatment of protection among three sections.
Section 7.3 addresses the fundamental question of limiting each process’s access to
memory. After showing how processors provide two distinct execution modes to serve
as the foundation for any protection system, I will present two approaches to mem-
ory protection: one with a separate address space for each process, and one with a
single address space. Moving beyond memory protection, Section 7.4 first presents
the fundamentals of access rights, then examines the two approaches I mentioned for
representing access rights: capabilities and the combination of credentials with access
control lists. The assumption throughout these two sections is that protection oper-
ates at the granularity of processes. Section 7.5 examines two alternatives, of finer and
coarser granularity. The finer-grained protection approach protects parts of processes
from each other. The coarser-grained approach, on the other hand, protects entire
simulated machines from one another, with each simulated machine running its own
operating system.

In Section 7.6, the chapter concludes with an examination of some of the security
issues most directly raised by material in the earlier sections.

7.2 POSIX Process Management API
All operating systems provide mechanisms for creating new processes, terminating
existing processes, and performing related actions. The details vary from system to
system. To provide a concrete example, I will present relevant features of the POSIX
API, which is used by Linux and UNIX, including by Mac OS X.

In the POSIX approach, each process is identified by a process ID number, which is a
positive integer. Each process (with one exception) comes into existence through the
forking of a parent process. The exception is the first process created when the operating
system starts running. A process forks off a new process whenever one of the threads

hailperin-163001 book October 18, 2005 11:18

7.2 POSIX Process Management API ! 223

running in the parent process calls the fork procedure. In the parent process, the call
to fork returns the process ID number of the new child process. (If an error occurs,
the procedure instead returns a negative number.) The process ID number may be
important to the parent later, if it wants to exert some control over the child or find
out when the child terminates.

Meanwhile, the child process can start running. The child process is in many
regards a copy of the parent process. For protection purposes, it has the same cre-
dentials as the parent and the same capabilities for such purposes as access to files that
have been opened for reading or writing. In addition, the child contains a copy of the
parent’s address space. That is, it has available to it all the same executable program
code as the parent, and all of the same variables, which initially have the same values
as in the parent. However, because the address space is copied instead of shared, the
variables will start having different values in the two processes as soon as either per-
forms any instructions that store into memory. (Special facilities do exist for sharing
some memory; I am speaking here of the normal case.) Of course, the operating system
doesn’t need to actually copy each page of the address space. It can use copy on write
(COW) to avoid (or at least postpone) most of the copying.

Because the child process is nearly identical to the parent, it starts off by perform-
ing the same action as the parent; the fork procedure returns to whatever code called
it. However, application programmers generally don’t want the child to continue exe-
cuting all the same steps as the parent; there wouldn’t be much point in having two
processes if they behaved identically. Therefore, the fork procedure gives the child
process an indication that it is the child so that it can behave differently. Namely,
fork returns a value of 0 in the child. This contrasts with the return value in the
parent process, which is the child’s process ID number, as mentioned earlier.

The normal programming pattern is for any fork operation to be immediately
followed by an if statement that checks the return value from fork. That way, the
same program code can wind up following two different courses of action, one in the
parent and one in the child, and can also handle the possibility of failure, which is
signaled by a negative return value. The C++ program in Figure 7.1 shows an example
of this; the parent and child processes are similar (both loop five times, printing five
messages at one-second intervals), but they are different enough to print different
messages, as shown in the sample output in Figure 7.2. Keep in mind that this output
is only one possibility; not only can the ID number be different, but the interleaving
of output from the parent and child can also vary from run to run. This example
program also illustrates that the processes each get their own copy of the loopCount
variable. Both start with the initial value, 5, which was established before the fork.
However, when each process decrements the counter, only its own copy is affected. In
Programming Projects 7.1 and 7.2, you can write variants of this program.

hailperin-163001 book October 18, 2005 11:18

224 ! Chapter 7 Processes and Protection

#include <unistd.h>
#include <stdio.h>
#include <iostream>
using namespace std;

int main(){
int loopCount = 5; // each process will get its own loopCount
cout << "I am still only one process." << endl;
pid_t returnedValue = fork();
if(returnedValue < 0){

// still only one process
perror("error forking"); // report the error
return -1;

} else if (returnedValue == 0){
// this must be the child process
while(loopCount > 0){

cout << "I am the child process." << endl;
loopCount--; // decrement child’s counter only
sleep(1); // wait a second before repeating

}
} else {

// this must be the parent process
while(loopCount > 0){

cout << "I am the parent process; my child’s ID is "
<< returnedValue << "." << endl;

loopCount--; // decrement parent’s counter only
sleep(1);

}
}
return 0;

}

Figure 7.1 This C++ program, forker.cpp, demonstrates process creation using fork. The
program prints eleven lines of output, including five each from the parent and child process after the
call to fork.

In early versions of UNIX, only one thread ever ran in each process. As such, pro-
grams that involved concurrency needed to create multiple processes using fork. In
situations such as that, it would be normal to see a program like the one in Figure 7.1,
which includes the full code for both parent and child. Today, however, concurrency
within a program is normally done using a multi-threaded process. This leaves only
the other big use of fork: creating a child process to run an entirely different program.
In this case, the child code in the forking program is only long enough to load in the

hailperin-163001 book October 18, 2005 11:18

7.2 POSIX Process Management API ! 225

I am still only one process.
I am the child process.
I am the parent process; my child’s ID is 23307.
I am the parent process; my child’s ID is 23307.
I am the child process.
I am the parent process; my child’s ID is 23307.
I am the child process.
I am the parent process; my child’s ID is 23307.
I am the child process.
I am the parent process; my child’s ID is 23307.
I am the child process.

Figure 7.2 This sample output from the forker program of Figure 7.1 shows just one possible
sequence of events.

new program and start it running. This happens, for example, every time you type a
program’s name at a shell prompt; the shell forks off a child process in which it runs
the program. Although the program execution is distinct from the process forking, the
two are used in combination. Therefore, I will turn next to how a thread running in a
process can load a new program and start that program running.

The POSIX standard includes six different procedures, any one of which can be
used to load in a new program and start it running. The six are all variants on a theme;
because they have names starting with exec, they are commonly called the exec family.
Each member of the exec family must be given enough information to find the new
program stored in a file and to provide the program with any arguments and environ-
ment variables it needs. The family members differ in exactly how the calling program
provides this information. Because the family members are so closely related, most sys-
tems define only the execve procedure in the kernel of the operating system itself;
the others are library procedures written in terms of execve.

Because execl is one of the simpler members of the family, I will use it for an
example. The program in Figure 7.3 prints out a line identifying itself, including its
own process ID number, which it gets using the getpid procedure. Then it uses execl
to run a program, named ps, which prints out information about running processes.
After the call to execl comes a line that prints out an error message, saying that the
execution failed. You may find it surprising that the error message seems to be issued
unconditionally, without an if statement testing whether an error in fact occurred.
The reason for this surprising situation is that members of the exec family return only
if an error occurs; if all is well, the new program has started running, replacing the
old program within the process, and so there is no possibility of returning in the old
program.

hailperin-163001 book October 18, 2005 11:18

226 ! Chapter 7 Processes and Protection

#include <unistd.h>
#include <stdio.h>
#include <iostream>
using namespace std;

int main(){
cout << "This is the process with ID " << getpid()

<< ", before the exec." << endl;
execl("/bin/ps", "ps", "axl", NULL);
perror("error execing ps");
return -1;

}

Figure 7.3 This C++ program, execer.cpp, illustrates how the procedure execl (a member
of the exec family) can be used to change which program the current process is running. The same
process ID that this program reports as its own is later shown by the ps program as being its own,
because the same process starts running the ps program. Note also the unconditional error message
after the call to execl; only if execl fails does the calling program continue to run.

Looking in more detail at the example program’s use of execl, you can see that
it takes several arguments that are strings, followed by the special NULL pointer. The
reason for the NULL is to mark the end of the list of strings; although this example had
three strings, other uses of execl might have fewer or more. The first string specifies
which file contains the program to run; here it is /bin/ps, that is, the ps program in
the /bin directory, which generally contains fundamental programs. The remaining
strings are the so-called “command-line arguments,” which are made available to the
program to control its behavior. Of these, the first is conventionally a repeat of the com-
mand’s name; here, that is ps. The remaining argument, axl, contains both the letters
ax indicating that all processes should be listed and the letter l indicating that more
complete information should be listed for each process. As you can see from the sam-
ple output in Figure 7.4, the exact same process ID that is mentioned in the initial
message shows up again as the ID of the process running the ps axl command. The
process ID remains the same because execl has changed what program the process is
running without changing the process itself.

One inconvenience about execl is that to use it, you need to know the directory
in which the program file is located. For example, the previous program will not work
if ps happens to be installed somewhere other than /bin on your system. To avoid
this problem, you can use execlp. You can give this variant a filename that does not
include a directory, and it will search through a list of directories looking for the file,
just like the shell does when you type in a command. This can be illustrated with an
example program that combines fork with execlp, as shown in Figure 7.5.

hailperin-163001 book October 18, 2005 11:18

7.2 POSIX Process Management API ! 227

This is the process with ID 3849, before the exec.
UID PID ... COMMAND

.

.

.
0 3849 ... ps axl

.

.

.

Figure 7.4 This sample output from the execer program in Figure 7.3 was made narrower and
shorter by omitting many of the columns of output produced by the ps axl command as well as
many of its lines of output. The remaining output suffices to show that the process had process
ID (PID) 3849 before it executed ps axl, and that the same process became the process running
the ps axl command.

#include <unistd.h>
#include <stdio.h>

int main(){
pid_t returnedValue = fork();
if(returnedValue < 0){

perror("error forking");
return -1;

} else if (returnedValue == 0){
execlp("xclock", "xclock", NULL);
perror("error execing xclock");
return -1;

} else {
return 0;

}
}

Figure 7.5 This C program, launcher.c, runs xclock without waiting for it. The program does
so by forking off a child process and executing xclock in that child process. The result is that
xclock continues to run in its own window while the parent process exits, allowing the shell from
which this program was run to prompt for another command.

This example program assumes you are running the X Window System, as on most
Linux or UNIX systems. It runs xclock, a program that displays a clock in a separate
window. If you run this program from a shell, you will see the clock window appear,
and your shell will prompt you for the next command to execute while the clock
keeps running. This is different than what happens if you type xclock directly to the

hailperin-163001 book October 18, 2005 11:18

228 ! Chapter 7 Processes and Protection

shell. In that case, the shell waits for the xclock program to exit before prompting for
another command. Instead, the example program is more similar to typing xclock &

to the shell. The & character tells the shell not to wait for the program to exit; the
program is said to run “in the background.” The way the shell does this is exactly
the same as the sample program: it forks off a child process, executes the program
in the child process, and allows the parent process to go on its way. In the shell, the
parent loops back around to prompt for another command.

When the shell is not given the & character, it still forks off a child process and runs
the requested command in the child process, but now the parent does not continue
to execute concurrently. Instead, the parent waits for the child process to terminate
before the parent continues. The same pattern of fork, execute, and wait would apply
in any case where the forking of a child process is not to enable concurrency, but rather
to provide a separate process context in which to run another program.

In order to wait for a child process, the parent process can invoke the waitpid pro-
cedure. This procedure takes three arguments; the first is the process ID of the child
for which the parent should wait, and the other two can be zero if all you want the
parent to do is to wait for termination. As an example of a process that waits for each
of its child processes, Figure 7.6 shows a very stripped-down shell. This shell can be
used to run the user’s choice of commands, such as date, ls, and ps, as illustrated in
Figure 7.7. A real shell would allow command line arguments, offer background execu-
tion as an option, and provide many other features. Nonetheless, you now understand
the basics of how a shell runs programs. In Programming Projects 7.3 and 7.4, you can
add some of the missing features.

The exec family of procedures interacts in an interesting fashion with protection
mechanisms. When a process executes a program file, there is ordinarily almost no
impact on the process’s protection context. Any capabilities (for reading and writing
files, for example) remain intact, and the process continues to operate with the same
user identification credentials. This means that when you run a program, generally it
is acting on your behalf, with the access rights that correspond to your user identifica-
tion. However, there is one important exception. A program file can have a special set
user ID (setuid) bit set on it, in which case, a process that executes the program acquires
the credential of the file’s owner.

Because a setuid program can check which user ran it, and can check all sorts of
other data (the time of day, for example), the setuid mechanism provides an extremely
general mechanism for granting access rights. You can grant any subset of your rights
to any other users you choose, under any conditions that you can program, by writ-
ing a setuid program that tests for the conditions and then performs the controlled
access. As a mundane example, you can create a game program that has the ability to
write into a file of high scores, no matter who is running it, even though other users

hailperin-163001 book October 18, 2005 11:18

7.2 POSIX Process Management API ! 229

#include <unistd.h>
#include <stdio.h>
#include <sys/wait.h>
#include <string>
#include <iostream>
using namespace std;

int main(){
while(1){ // loop until return

cout << "Command (one word only)> " << flush;
string command;
cin >> command;
if(command == "exit"){

return 0;
} else {

pid_t returnedValue = fork();
if(returnedValue < 0){

perror("error forking");
return -1;

} else if (returnedValue == 0){
execlp(command.c_str(), command.c_str(), NULL);
perror(command.c_str());
return -1;

} else {
if(waitpid(returnedValue, 0, 0) < 0){

perror("error waiting for child");
return -1;

}
}

}
}

}

Figure 7.6 This C++ program, microshell.cpp, is a stripped-down shell that waits for each
child process.

are forbidden from directly writing into the file. A similar program you have likely
encountered is the one you use to change your password. That program can update a
password database that you do not have permission to directly modify. As I will discuss
in Section 7.6, the setuid mechanism’s flexibility makes it useful for enforcing security
policies; however, I will also point out in Section 7.6 that the same mechanism is the
source of many security pitfalls. (Even ordinary program execution, with credentials
left unchanged, can be a security problem, as I will discuss.)

hailperin-163001 book October 18, 2005 11:18

230 ! Chapter 7 Processes and Protection

Command (one word only)> date
Thu Feb 12 09:33:26 CST 2004
Command (one word only)> ls
microshell microshell.cpp microshell.cpp~
Command (one word only)> ps

PID TTY TIME CMD
23498 pts/2 00:00:00 bash
24848 pts/2 00:00:00 microshell
24851 pts/2 00:00:00 ps
Command (one word only)> exit

Figure 7.7 This sample interaction shows the date, ls, and ps commands being run within the
microshell from Figure 7.6.

At this point, you have seen many of the key elements of the process life cycle.
Perhaps the most important omission is that I haven’t shown how processes can termi-
nate, other than by returning from the main procedure. A process can terminate itself
by using the exit procedure (in Java, System.exit), or it can terminate another
process using the kill procedure (see the documentation for details). Rather than
exploring process programming further here, I will move on to the mechanisms that
operating systems use to protect the memory occupied by processes. If you want to
pursue application programming further, the notes section at the end of the chapter
suggests additional reading.

7.3 Protecting Memory
Memory protection is the most fundamental barrier between processes, as well as
between each process and the operating system. If a process could freely write into the
operating system’s data structures, the operating system would be unable to enforce
any other kind of protection. Moreover, if processes could freely write into each oth-
er’s memory, a process without ability to write a file (for example) could manipulate
another into doing so for it. Thus, to understand any other kind of protection, you
need to first understand how memory is protected.

Section 7.3.1 explains the foundation of this protection, which is the processor’s
ability to switch between a restricted and an unrestricted mode of operation. Sections
7.3.2 and 7.3.3 explain how memory protection can be built on that foundation in
either of two ways: by giving each process its own virtual memory address space or by
giving the processes differing access rights within a single address space.

hailperin-163001 book October 18, 2005 11:18

7.3 Protecting Memory ! 231

7.3.1 The Foundation of Protection: Two Processor Modes
Whether the operating system gives each process its own address space, or instead gives
each process its own access rights to portions of a shared address space, the operating
system needs to be privileged relative to the processes. That is, the operating system
must be able to carry out actions, such as changing address spaces or access rights, that
the processes themselves cannot perform. Otherwise, the processes wouldn’t be truly
contained; they could get access to each other’s memory the same way the operating
system does.

For this reason, every modern processor can run in two different modes, one for
the operating system and one for the application processes. The names of these modes
vary from system to system. The more privileged mode is sometimes called kernel mode,
system mode, or supervisor mode. Of these, kernel mode seems to be in most common use,
so I will use it. The less privileged mode is often called user mode.

When the processor is in kernel mode, it can execute any instructions it encoun-
ters, including ones to change memory accessibility, ones to directly interact with I/O
devices, and ones to switch to user mode and jump to an instruction address that is
accessible in user mode. This last kind of instruction is used when the operating system
is ready to give a user process some time to run.

When the processor is in user mode, it will execute normal instructions, such as
add, load, or store. However, any attempt to perform hardware-level I/O or change
memory accessibility interrupts the process’s execution and jumps to a handler in the
operating system, an occurrence known as a trap. The same sort of transfer to the
operating system occurs for a page fault or any interrupt, such as a timer going off or
an I/O device requesting attention. Additionally, the process may directly execute an
instruction to call an operating system procedure, which is known as a system call. For
example, the process could use system calls to ask the operating system to perform
the fork and execve operations that I described in Section 7.2. System calls can also
request I/O, because the process doesn’t have unmediated access to the I/O devices.
Any transfer to an operating system routine changes the operating mode and jumps
to the starting address of the routine. Only designated entry points may be jumped to
in this way; the process can’t just jump into the middle of the operating system at an
arbitrary address.

The operating system needs to have access to its own portion of memory, as well
as the memory used by processes. The processes, however, must not have access to the
operating system’s private memory. Thus, switching operating modes must also entail
a change in memory protection. How this is done varies between architectures.

Some architectures require the operating system to use one address space for its
own access, as well as one for each process. For example, if a special register points

hailperin-163001 book October 18, 2005 11:18

232 ! Chapter 7 Processes and Protection

at the base of the page table, this register may need to be changed every time the
operating mode changes. The page table for the operating system can provide access
to pages that are unavailable to any of the processes.

Many other architectures allow each page table entry to contain two different pro-
tection settings, one for each operating mode. For example, a page can be marked as
readable, writable, and executable when in kernel mode, but totally inaccessible when
in user mode. In this case, the page table need not be changed when switching oper-
ating modes. If the kernel uses the same page table as the user-mode process, then the
range of addresses occupied by the kernel will be off limits to the process. The IA-32
architecture fits this pattern. For example, the Linux operating system on the IA-32
allows each user-mode process to access up to 3 GB of its 4-GB address space, while
reserving 1 GB for access by the kernel only.

In this latter sort of architecture, the address space doesn’t change when switching
from a user process to a simple operating system routine and back to the same user
process. However, the operating system may still need to switch address spaces before
returning to user mode if its scheduler decides the time has come to run a thread
belonging to a different user-mode process. Whether this change of address spaces is
necessary depends on the overall system design: one address space per process or a
single shared address space. Sections 7.3.2 and 7.3.3 address these alternatives.

Having described the distinction between kernel mode and user mode, I am also
now in a position to explain the three ways in which threads can be implemented
using those modes. Figure 7.8 shows the three options in schematic form; I explain
them in the following paragraphs.

As described in Chapters 2 and 6, operating system kernels use threads for their
own internal purposes, such as zeroing out unused page frames or flushing dirty pages

User mode

Kernel mode

(a) (b) (c)

Figure 7.8 Three relationships are possible between threads, the scheduling and dispatching code
that switches threads, and the operating modes: (a) the threads can be part of the kernel, along with
the kernel’s scheduler and dispatcher; (b) the threads can run mostly in user mode, but be scheduled
and dispatched in the kernel; (c) the threads can run in user mode along with a user-level scheduler
and dispatcher.

hailperin-163001 book October 18, 2005 11:18

7.3 Protecting Memory ! 233

out to disk. In these circumstances, the threads may execute entirely within kernel
mode; they are called kernel threads. As shown in Figure 7.8(a), the processor can run
a first kernel thread, the kernel’s scheduling and thread dispatching code, and then a
second kernel thread, all without leaving kernel mode.

An operating system kernel’s scheduler may also choose to run a thread that is
part of a user-mode process. As shown in Figure 7.8(b), switching between user threads
requires two mode switches, even if the threads are in the same process. First, a switch
from user mode to kernel mode is needed when moving from one user thread to the
scheduler. Second, a switch from kernel mode back to user mode is needed when the
kernel dispatches the next user thread. Nomenclature for these kernel-supported user
threads is not standardized; the most common term seems to be native threads, or
simply threads when the context is clear.

To avoid mode-switching costs when switching threads within a process, some
middleware systems provide scheduling and dispatching mechanisms analogous to
the kernel’s but residing within the user-level code, that is, the code running in user
mode. As shown in Figure 7.8(c), this allows the outgoing thread, the scheduler, and
the incoming thread to all execute in user mode with no mode switch—provided the
two threads are in the same process. These threads are commonly called user-level
threads, but I prefer Microsoft’s name, fibers. This name makes clear that I am not
talking about Figure 7.8(b)’s threads, which also contain user-level code. Moreover,
the name provides a nice metaphor, suggesting that multiple fibers exist within one
native, kernel-supported thread. As shown in Figure 7.9, the kernel’s scheduler divides
the processor between threads, but within each thread, there can also be a user-level
scheduler switching between fibers.

Although you needed to understand the two processor modes in order to appreci-
ate the preceding three kinds of threads, you should keep in mind that I introduced

User mode

Kernel mode

Figure 7.9 Multiple user-level threads can be enclosed in each kernel-supported native thread. The
kernel’s scheduler switches between the enclosing native threads. Within each of them, user-level
dispatching also occurs. This creates what Microsoft calls fibers within the threads.

hailperin-163001 book October 18, 2005 11:18

234 ! Chapter 7 Processes and Protection

you to the processor modes for a different reason. Namely, the processor modes pro-
vide the foundation for the protection of processes. For example, the processor modes
allow each process to be confined within its own address space in a multiple address
space system.

7.3.2 The Mainstream: Multiple Address Space Systems
Most operating systems (including Linux, Microsoft Windows, and Mac OS X) pro-
vide memory protection by giving each process its own virtual memory address space.
Unless the application programmer makes special arrangements, these address spaces
are completely disjoint. However, the programmer can explicitly ask the operating
system to map the same file, or the same block of shared memory space, into several
processes’ address spaces.

The multiple address space design is particularly appropriate on architectures with
comparatively narrow addresses. For example, a 32-bit address can reference only a
4-GB address space. If a 32-bit system is going to run several processes, each of which
has a couple gigabytes of data to access, the only way to obtain enough space is by
using multiple address spaces. This motivation for multiple address spaces goes away
(for present practical purposes) on 64-bit systems.

Regardless of address size, the multiple address space design confers other advan-
tages, which I mentioned in Section 6.1, where I provided a rationale for virtual mem-
ory. Each process can allocate virtual addresses independently from the others. This
means that a compiler can build addresses into a program, even though several con-
current processes may be running the same program; each will be able to use the pre-
determined addresses for its own copy of data. Moreover, procedures to dynamically
allocate memory (for example, when creating objects) can work independently in the
different processes. Even shared memory can independently appear at the most con-
venient virtual address for each process. For example, several processes running the
same program can all consistently use one virtual address for their input channels,
and all consistently use a second virtual address for their output channels, even if one
process’s output channel is another’s input channel.

However, independent address spaces can also confer disadvantages. I briefly men-
tioned one in Section 6.2.2: inconsistent virtual addresses for shared memory means
pointer-based structures can’t be shared. At the level of abstraction provided by pro-
gramming languages, objects are linked together by pointers (as in C++) or references
(as in Java). At the lower level of abstraction executed by the computer, these language
constructs generally are represented by virtual addresses; one object contains the vir-
tual address of another. With separate address spaces, virtual addresses are meaningful

hailperin-163001 book October 18, 2005 11:18

7.3 Protecting Memory ! 235

only within one process. Thus, while a shared memory region can contain a simple
data structure, such as a contiguous array of characters, it cannot contain anything
complex enough to need pointers, such as a linked list or tree. Strictly speaking, point-
ers can be used as long as they are represented other than as virtual addresses (which
most compilers won’t do) or the processes take care to map the shared memory into the
same locations (which is difficult to square with their independent allocation of other
memory). Pointer-based data structures that span multiple shared-memory regions are
even more problematic.

You can see one important variant of the pointer problem if you recognize that
memory holds code as well as data. Instructions sometimes include virtual addresses:
either the virtual address of another instruction to jump to or the virtual address of
a data location to load or store. The virtual addresses included within instructions
suffer the same fate as pointers: either they need to be kept local to one process or the
processes need to coordinate their assignments of virtual addresses. However, if the
processes need to coordinate address allocation, you have already traded away one of
the advantages of separate address spaces.

Another disadvantage to separate address spaces is that addresses cannot be used
as the ultimate system-wide name for objects. For example, suppose two processes are
communicating, and one of them wants to suggest to the other that it map some new
object into its address space. The sending process can’t specify the object in question
by address (even though it may have an address for the object), because the receiving
process doesn’t yet have an address for the object. Instead, the communication needs
to be in terms of some other, address-neutral nomenclature, such as filenames. Simi-
larly, virtual addresses can’t play any role in persistent storage of objects, because their
validity is confined to a single executing process.

None of these disadvantages has been sufficiently severe as to displace multiple
address space systems from the mainstream. However, the disadvantages have been
sufficient to cause system designers to explore the alternative, which is for all proc-
esses to share a single address space. Single address space systems have even been
commercially deployed—in one case with considerable success. Therefore, I will move
next to a consideration of such systems.

7.3.3 An Alternative: Single Address Space Systems
There is no need to consider in detail the advantages and disadvantages of a single
address space; they are the exact opposite of those for multiple address spaces. Proc-
esses can share and store addresses freely but need to coordinate on their allocation.
Instead of rehearsing the case for and against a single address space system, I will con-
sider how one could still protect memory with such a system.

hailperin-163001 book October 18, 2005 11:18

236 ! Chapter 7 Processes and Protection

Beyond questions of security, memory protection is critical because programs con-
tain bugs. Debugging is challenging enough even if the result of a bug in one process
always manifests itself as a symptom in that same process. However, without memory
protection, a bug in one process can cause a symptom in another process, because the
bug can take the form of writing into memory being used by the other process. This
situation, in which a process’s data seems to spontaneously change as a result of a bug
in an unrelated process, is a debugging nightmare. Thus, even in a single address space
system, processes must have varying access rights to memory. The goal in moving to
a single address space is simply to decouple the question of accessibility from that of
addressability. The latter concerns whether a memory location can be named, whereas
the former concerns whether the location can be read and written.

In a multiple address space system, the processes are protected from one another
through addressability; each process will typically have no ability to name the memory
locations being used by the others. Even when two address spaces share a particular
region of memory, the accessibility of that region is seldom modulated independently
for the individual processes. For example, it would be rare for a shared-memory region
to be marked read-only for one process but not another. By contrast, the processes in
a single address space system are not separated at all by addressability; they can all
name any memory location. Instead, the processes differ with regard to the memory
regions they have permission to read and write.

Intel’s Itanium architecture contains a representative mechanism for supporting
protection in a shared address space. Each page table entry (in a hashed page table)
contains a protection key, which is a number. The idea is that all pages that are to be
protected in the same way have the same key. In particular, if a data structure spans
several pages, all the pages would have the same key. Giving a process the right to read
pages with that key would give that process the right to read the whole structure. A
collection of at least sixteen special registers holds protection keys possessed by the
currently executing process. Every memory access is checked: does the process have a
key that matches the accessed page? If not, the hardware traps to an operating system
handler, much like for a page fault.

Processes may need access to more independently protected memory regions than
the number of protection key registers. Therefore, the operating system will normally
use those registers as only a cache of recently accessed structures’ keys, much like a TLB.
When a protection key miss fault occurs, the operating system will not immediately
assume the access was illegal. Instead, it will first search a comprehensive list of the
process’s keys. If the missing key is found there, the operating system will load it into
one of the key registers and resume execution. Only if the process truly doesn’t have
the key does the operating system cope with the illegal access, such as by terminating
the process.

hailperin-163001 book October 18, 2005 11:18

7.4 Representing Access Rights ! 237

Each protection key register contains not only a key number, but also a set of access
control bits for read, write, and execute permissions. Recall that each page table entry
also has access control bits. A process can access a page only if it has the appropriate
permission in its key register and the page table entry also allows the access. Thus,
the page table entry can specify the maximum access for any process, whereas the
protection key registers can provide modulated access for individual processes. For
example, a process may only be able to read a group of pages that some other process
can write.

Although single address space systems remain outside the mainstream, at least
one has proved to be commercially viable. In the 1970s, IBM chose the single address
space design for an innovative product line, the System/38, aimed at small businesses.
In 1988, they issued a revised version of the same basic design, the AS/400, and in
2000 they renamed the AS/400 the iSeries. Whatever it may be called, the design has
proved successful; as of June 2005, IBM reports that more than 400,000 iSeries servers
are installed worldwide.

7.4 Representing Access Rights
In Sections 7.4.2 and 7.4.3, I will present the two principle approaches to representing
access rights. First, though, I will use Section 7.4.1 to clarify the vocabulary used for
discussing protection systems.

7.4.1 Fundamentals of Access Rights
A protection system controls access to objects by subjects. An object is whatever kind of
entity needs protection: a region of memory, a file, a service that translates names to
addresses, or anything else. A subject is the active entity attempting to make use of an
object; I will generally assume that it is a process, because each thread within the proc-
ess has the same access rights. Each kind of object has its own repertory of operations
that a subject can perform on it, if the protection system permits: for example, a mem-
ory region may have read and write operations, whereas a naming service may have
lookup, insert, and modify operations. Each subject is also an object, because opera-
tions can be performed on subjects, such as the operation of terminating a process.

Although protection mechanisms normally operate in terms of access rights given
to subjects (that is, processes within the computer), those access rights ultimately
should reflect the external authority of human users. To capture this notion, I will
say that each subject is acting on behalf of a principal. For most purposes, you can
equate the word “principal” with “user.”

hailperin-163001 book October 18, 2005 11:18

238 ! Chapter 7 Processes and Protection

I use the technical word “principal” because occasionally the principal will be an
organization rather than an individual, and because a server process may treat client
processes as principals, for its purposes, even though the client processes are really only
intermediaries, themselves operated by users. The distinguishing feature of a principal
is that its rights are completely a question of policy, not of technical mechanism. If
organizational policy directs a web server to grant some rights to particular client web
browsers (such as those at on-campus addresses), then it is treating those browsers as
principals. If, on the other hand, the organizational policy directs the web server to
attempt to identify the human sitting at the web browser and grant access rights on
that basis, then the human is the principal and the web browser is just an intermediary
subject.

As my example of a web server indicates, a subject may operate on behalf of one
principal at one time and a different principal at a different time. One common, but
unsatisfactory, design is for the operating system’s protection mechanism to give the
subject the union of all the access rights it needs for all the principals. The subject then
has the responsibility to enforce more specific protections. A better design would be
for the operating system’s protection mechanism to allow the server to switch from
one set of access rights to another. In this case, the subject is said to move from one
protection domain to another; a protection domain is simply the set of access rights
possessed by a subject.

Some subjects may also need to switch domains in order to obtain extra access
rights that would not normally be available to the principal. I have already men-
tioned one form this can take. In systems such as Linux and UNIX, when a process
executes a program that has the setuid bit set, the process switches protection domains
by taking on the identity of the program file’s owner, with all the corresponding access
rights.

At any one time, you can look at one subject (call it S) and one object (call it O) and
say that S is allowed to perform some particular set of operations on O. To generalize
this to the whole system, one can picture the instantaneous state of a protection system
as an access matrix, with one row for each subject and one column for each object. The
entry in row S and column O of the matrix is the set of operations that S can perform
on O, as shown in Figure 7.10. Any attempt by a subject to perform an operation can
be checked for legality by reference to the matrix.

The access matrix in most systems is very dynamic; it gains and loses columns
and rows, and the operations listed in individual cells of the matrix change over time.
For example, forking off a new process would add a row and a column to the matrix,
because the new process is both a subject and an object. If the process executes a
setuid program, many of the entries in that process’s row of the matrix would change,
because the new user identity conveys different access rights to many objects.

hailperin-163001 book October 18, 2005 11:18

7.4 Representing Access Rights ! 239

Subjects






Objects
︷ ︸︸ ︷
· · · O · · ·

...

S
operations S
can perform

on O
...

Figure 7.10 An access matrix has one row for each subject, one column for each object, and entries
showing which operations each subject can perform on each object.

F P1 P2 · · ·
P1 change accessibility transfer rights
P2 change accessibility
...

Figure 7.11 An access matrix can contain rights that control changes to the matrix itself. In this
example, the processes P1 and P2 have the right to change the accessibility of file F, that is, to change
entries in F ’s column of the access matrix. Process P1 also has the right to transfer rights to process
P2, that is, to copy any access right from the P1 row of the matrix to the corresponding entry in the P2
row. Notice that the representation of the right to transfer rights relies upon that fact that each subject
is also an object.

Some changes to the access matrix also reflect explicit protection operations, such
as making a formerly private file readable by everyone or passing an access right held
by one process to another process. These protection operations can themselves be reg-
ulated by access rights listed in the access matrix, as illustrated in Figure 7.11. Chang-
ing a file’s accessibility would be an operation on that file, contained in some entries
within that file’s column of the matrix. Normally, this operation would not appear in
every entry of the column, because only some processes should be able to change the
file’s accessibility. If only processes P1 and P2 have the right to change file F ’s accessi-
bility, then the corresponding change-accessibility access right would show up in the
matrix in two spots, exactly where rows P1 and P2 intersect with column F . Similarly,
if process P1 can pass an access right along to process P2, there might be an entry in
row P1 and column P2 conferring that transfer-rights permission. (Recall that subjects,
such as P2, are also objects, and hence have columns as well as rows.)

hailperin-163001 book October 18, 2005 11:18

240 ! Chapter 7 Processes and Protection

(a) F1 F2 JDoe P1 · · ·
JDoe read write

P1 read write
...

(b) F1 F2 JDoe P1 · · ·
JDoe read write

P1 use the rights of
...

Figure 7.12 If access rights are initially granted to a principal, such as JDoe, then there are two
options for how those rights can be conveyed to a process, such as P1, operating on behalf of that
principal. In option (a), when the process P1 is created, all of JDoe’s rights are copied to P1’s row of
the matrix; in this example, the rights are to read file F1 and write file F2. In option (b), P1 is given just
a special right to indirectly use the rights of JDoe.

In order to fit common protection mechanisms into the access matrix model, some
slight contortions are necessary. For example, many mechanisms include access rights
granted to principals (users), independent of whether they are running any compu-
tations at the time. Thus, it becomes necessary to add the principals themselves as
subjects, in addition to their processes. Access rights can then go in both the row for
the principal and the rows (if any) for the processes running on behalf of the princi-
pal. When a principal starts running a new process, the protection system can initialize
the newly added row with rights taken from the principal’s row. Alternatively, the
process can just have rights to a special operation on the principal object, allowing it
to indirectly use the principal’s rights. Figure 7.12 illustrates both alternatives.

The access matrix model is very general: protections are established by sets of
operations contained in an access matrix, which include operations to change the
matrix itself. This generality suggests that one could construct an elegant mathe-
matical theory of protection systems, which would work independently from the
specifics of concrete systems. Unfortunately, the model’s generality itself limits the
results such a mathematical theory can provide. Harrison, Ruzzo, and Ullman showed
that under very basic assumptions, the general access matrix model can simulate a
Turing machine, with the matrix playing the role of the Turing machine’s tape. Fun-
damental questions, such as whether a particular access right leaks out, turn out to
be equivalent to the halting problem and, as such, are undecidable. Even restricting
the problems enough to render them decidable may not make them practically solv-
able; for example, some fall into the class of PSPACE-complete problems. As explained

hailperin-163001 book October 18, 2005 11:18

7.4 Representing Access Rights ! 241

in the end-of-chapter notes, this classification from computational complexity theory
contains only very hard problems for which efficient solution algorithms are unlikely
to exist. Thus, concrete protection systems need to be analyzed individually, rather
than by reference to general results about the access matrix model.

Access matrices can represent very different security policies, depending on their
contents. If you focus on the operations that allow modification of the matrix, you
can distinguish two broad categories of policies: Discretionary Access Control (DAC) and
Mandatory Access Control (MAC).

Most mainstream systems (such as Linux, Microsoft Windows, and Mac OS X) are
usually configured to use DAC, so you are probably familiar with that class of policies,
even if you are not familiar with the name. In a DAC system, each object is considered
to be owned by a principal; when one of your processes creates an object (such as a file),
you become its owner. The owner has broad rights to control the object’s accessibility.
As the owner of a file, you can choose whether to let other users read or write the file. In
some DAC systems, you can go even further than giving away arbitrary access rights
to your files; you can give away transferable rights, allowing other users to further
propagate access to your files.

By contrast, an object’s creator in a MAC system does not obtain control over access
rights to the object. Instead, the access rights are determined by an explicit security
policy and can be changed only within the parameters of that policy, often only by
a designated security officer, rather than by an ordinary user. For example, consider a
MAC system that enforces the military policy with regard to classified documents. If
you are using such a system and have created a classified document, the fact that you
are the creator does not give you any special control. You cannot choose to give access
to users who are not cleared for the document’s classification level. The only way the
document can be made readable to those users is by declassifying it, an operation that
only security officers can perform.

I will postpone further comparison between DAC and MAC systems until Sec-
tion 7.6. Even there, I will include only the basics, leaving more detailed treatment
for Chapter 11. For now, I will explain the two techniques that are used to keep track
of access rights, independent of what sort of policy those rights are enforcing. The first
technique is the use of capabilities, which I explain in Section 7.4.2. The second tech-
nique is the use of access control lists and credentials, which I explain in Section 7.4.3.

7.4.2 Capabilities
A capability is an indirect reference to an object, much like a pointer. The key distinc-
tion is that a capability includes not only the information needed to locate the object,

hailperin-163001 book October 18, 2005 11:18

242 ! Chapter 7 Processes and Protection

but also a set of access rights. For example, two processes could possess capabilities for
the same file, but one of them might have a read-only capability to the file, whereas
the other might have a capability that permitted both reading and writing. A process
that possesses capabilities has a tangible representation of entries from its row of the
access matrix.

Nomenclature, as always, is not standardized. Although the word “capability”
dates back to the mid-1960s and is popular in the academic literature, other names are
used by today’s mainstream operating systems. Microsoft Windows refers to capabili-
ties as handles, and POSIX systems such as Linux and UNIX refer to them as descriptors.
Continuing with the example of files, a Windows process could have a file handle that
permitted reading only, and a Linux process could have a file descriptor that permit-
ted reading only. (As you will see shortly, the handles and descriptors are actually even
more indirect than capabilities; however, for everyday purposes, programmers can and
do think about them in the same way as capabilities.)

To further confuse matters, the designers of Linux and UNIX systems have recently
started using the word “capability” in a somewhat different sense. A capability in this
new sense of the word confers rights, but does not refer to a specific object. For exam-
ple, a process might hold a capability that allows it to access any file, or one that allows
it to kill any process. To distinguish the two senses, these new object-independent
capabilities are sometimes called “POSIX capabilities,” even though the draft standard
that would have made them part of POSIX was in fact abandoned. I will not use the
word “capability” in this sense.

A process can store its capabilities in either of two ways, depending on the design
of the operating system. Most systems give each process a special storage area just
for capabilities, independent of the normal virtual memory address space of the proc-
ess. Microsoft Windows and the POSIX systems take this approach. The alternative
approach, taken by the iSeries, is for a process’s capabilities to be stored in normal
memory, just like any other data.

A separate storage area for capabilities is called a C-list, which is short for capability
list. You will also frequently see C-lists called by system-specific names, such as han-
dle tables in Microsoft Windows and descriptor tables in POSIX systems. Systems with
C-lists provide special system calls to put entries into the C-list or otherwise oper-
ate on it, because normal load and store operations are not applicable. Entries in the
C-list are referred to by their integer positions within the list. For example, an opera-
tion to read from a file takes an integer argument, which must be the position within
the C-list of a file capability that includes the read permission. An operation to open a
file for reading adds an entry to the C-list and returns the integer index of that entry.

It is these integer indices into the C-list that serve as handles in Microsoft Win-
dows or as descriptors in POSIX. The integers can be stored anywhere in the process’s

hailperin-163001 book October 18, 2005 11:18

7.4 Representing Access Rights ! 243

memory; however, they do not have any significance outside the process, and so can-
not be used for interprocess communication or for persistent storage. In order to pass
a capability from one process to another, you need to use a special system call. The
sending process specifies the capability to send by its integer index, and the receiv-
ing process is notified of its newly acquired capability as an integer index. However,
the receiving process will in general be given a different integer than the sending
process sent, because the two processes each have their own C-lists. In POSIX systems,
descriptors are sent using sendmsg and received using recvmsg.

The capability model is incomplete as an explanation of POSIX file descriptors. As
I will explain in Chapter 8, to fully understand file descriptors, you need to consider
not only their capability-like properties, but also how the operating system keeps track
of other information associated with each open file, especially the current position
within the file for reading or writing. For the present chapter, however, I prefer to
continue with the topic of capabilities, explaining another option for how they can
be stored.

Instead of segregating the capabilities into a C-list for each process and forcing each
process to use positions within its C-list as surrogates for the capabilities, an operating
system can give the processes direct possession of the capabilities. In particular, IBM
chose this approach for the System/38 and carried it forward into the AS/400 and
iSeries. I call these nonsegregated capabilities addressable capabilities, because they are
stored within the address space.

Capabilities that are addressable values are considerably more flexible than the
C-list variety. By storing addressable capabilities within objects, software can use them
to link several independently protected objects together into a larger structure, just as
pointers would be used to make a more traditional structure of linked objects. This flex-
ibility is particularly valuable in the iSeries, because (as I mentioned in Section 7.3.3)
it is a single address space system.

The major difficulty with addressable capabilities is how to prevent an applica-
tion program from forging them. (Recall that in the C-list approach, the operating
system stores capabilities in memory inaccessible to the process, so forgery is a nonis-
sue.) Normally, the capabilities should come from trusted system calls. However, if the
capabilities are stored in ordinary memory locations, what is to stop a program from
writing the appropriate set of bits to look like a capability and then using that forged
capability to perform a protected operation?

Three basic approaches exist to prevent capability forgery. The approach used by
the iSeries relies on special hardware features. Each memory word is supplemented
by a tag bit indicating whether the word contains part of a capability. All normal
instructions set the bit to 0, whereas capability operations set it to 1. Only words with
their tag bits set to 1 can be used as a capability.

hailperin-163001 book October 18, 2005 11:18

244 ! Chapter 7 Processes and Protection

An alternative approach uses cryptographic techniques to achieve a high probabil-
ity that forgeries will be detected, without needing special hardware. If each capability
is represented by a large string of essentially random bits, and the operating system
can check whether a given string of bits is valid, the only way to forge a capability
would be by an incredibly lucky guess.

The third approach to preventing capability forgery forces all user programs to be
processed by a trusted translator that enforces a strong type system. The type system
prevents capability forgery the same way as any other type error. Interestingly, the
iSeries does put all user programs through a trusted translator; apparently its type
system is simply too weak to function without special tagging hardware. You will see
an example of a stronger type system providing protection in Section 7.5.1, where I
discuss the use of the Java Virtual Machine to provide protection at a finer granularity
than operating system processes.

With the iSeries’s combination of a single address space and addressable capabil-
ities, determining the set of all capabilities available to a given process is not an easy
job. They are not all in one place, unlike with a C-list. Nor can one just scan the
process’s address space looking for capabilities, because the process does not have an
individual address space. Instead, it has access to those portions of the shared address
space that are reachable through its capabilities. That is, each capability the process
has available leads to an object, which can in turn contain more capabilities, leading
to more objects. Some capabilities might lead back to already discovered objects. Thus,
to find all the capabilities would require a general directed graph traversal algorithm,
similar to what is needed for a garbage collector.

Regardless of how easy- or hard-to-find a process’s capabilities are, one can recog-
nize this set of capabilities as being the link to the abstract model of protection systems,
which is the access matrix. Each process’s set of capabilities corresponds with one row
of the access matrix, because it records one subject’s rights to objects. For a hypothet-
ical system that provided protection purely through capabilities, the correspondence
between access matrix rows and capability sets would be exact. The correspondence
is less direct in real systems, which blend capability-based protection with access con-
trol lists, a topic I consider in Section 7.4.3. Because of this hybridization of protection
representations, a process’s set of capabilities holds only a portion of the contents of
an access matrix row.

In all common operating systems, capabilities can be selectively granted but not
selectively revoked. As an example of the selective granting of capabilities, an
operating system will not allow just any process to open up a file of private infor-
mation and obtain the corresponding capability. (You will see in Section 7.4.3 how
the system achieves this.) However, once a process has the capability—whether by

hailperin-163001 book October 18, 2005 11:18

7.4 Representing Access Rights ! 245

successfully opening the file or by being passed the capability by another, more privi-
leged, process—it can continue to operate on the file. The file’s owner cannot revoke
the capability, short of destroying the file itself. (In POSIX systems, the owner can’t
even destroy the open file, but just its contents and any names it has.)

Several systems (such as Multics and various research systems) have supported
selective revocation, in which some capabilities to an object can be revoked, while
others remain valid. One approach is to keep track of the location of all copies of a
capability; they can be invalidated by overwriting them. Another approach is to check
whether a capability is still valid each time it is used to request an operation. For
example, if capabilities are large random strings of bits, each object can contain a list
of the valid capabilities.

Irrevocable capabilities are difficult to reconcile with system security. For this rea-
son, the architects of the AS/400 made a change (relative to the original design taken
from System/38) and eliminated all use of capabilities except within the operating
system itself.

The POSIX systems take a more pragmatic approach to the problem of irrevocable
capabilities. These systems use capabilities only for short-term storage of access rights
while a process is running. As such, any excess access rights caused by the irrevocable
capabilities will go away when the system is rebooted, in the worst case. Long-term
storage of access rights is provided by access control lists, which are the next topic of
this chapter.

7.4.3 Access Control Lists and Credentials
As you have seen, a capability list collects together the access rights held by a process.
This row-wise slice of the access matrix is natural when considering the instantaneous
rights of a process as it executes. However, it is much less natural when setting down (or
auditing) longer-term policy regarding access rights. For those purposes, most systems
use a mechanism based on user credentials and access control lists.

An access control list (ACL) is essentially a column-wise slice of the access matrix,
listing for one object what subjects may access the object, and in what manner. Rather
than listing the subjects at the fine granularity of individual processes, an ACL specifies
rights for users (that is, principals) or for named groups of users.

I can show you an example of an ACL on a Microsoft Windows system by pulling
up the Properties dialog box for a folder and selecting the Security tab on that dialog
box. The visual form of the dialog boxes is dependent on the particular version of
Windows, but the principles apply to all modern versions. As shown in Figure 7.13,
the folder named “max” has an ACL with three entries: two for groups of users

hailperin-163001 book October 18, 2005 11:18

246 ! Chapter 7 Processes and Protection

Figure 7.13 This is the initial dialog box summarizing a Microsoft Windows ACL, found in the
Security tab of a Properties dialog box.

(Administrators and SYSTEM) and one for an individual user (myself). In the bottom
part of the dialog box, you can see that any process running with a credential from the
Administrators group is allowed Full Control over this folder. The permissions (such
as Full Control) listed here are actually abbreviations for sets of permissions; to see
the individual permissions, one needs to click the Advanced button (which gives the
dialog box in Figure 7.14) and then the View/Edit button, producing the result shown
in Figure 7.15. As you can see, Full Control actually is a set of thirteen different per-
missions. Some of these permissions (those with slashes in their names) have different
interpretations when applied to folders than when applied to files.

One subtlety in Figures 7.13 and 7.15 concerns the presence of the Deny column
of check boxes; this column is to the right of the Allow column. You might suspect that
this is redundant, with the Deny box checked whenever the Allow box is unchecked.
Although that is a reasonable suspicion, it is wrong. You can see in Figure 7.16 that
the Users group has been neither allowed nor denied the ability to create files in
the Program Files folder. To understand ACLs, you need to understand the difference
between denying a permission and not allowing it.

As you have seen, an ACL entry can allow a permission, deny it, or neither.
(Although the graphical user interface looks as though an entry could both allow and

hailperin-163001 book October 18, 2005 11:18

Figure 7.14 Clicking the Advanced button on the dialog box shown in Figure 7.13 produces this
dialog box, which in turn gives you the opportunity to click the View/Edit button to obtain the detailed
view shown in Figure 7.15.

Figure 7.15 This detailed view of a Microsoft Windows ACL entry allows you to see that Full Control
really is a summary name for thirteen different permissions.

! 247 "

hailperin-163001 book October 18, 2005 11:18

248 ! Chapter 7 Processes and Protection

Figure 7.16 In the Microsoft Windows ACL entry shown in this detailed view, some permissions
are neither allowed nor denied. In this circumstance, other ACL entries are allowed to control
access.

deny the same permission, in fact this is not possible. Checking one box unchecks the
other.) Keep in mind that your rights as a user derive both from ACL entries specifically
for your user identity and from other ACL entries for groups to which you belong. In
combining together these various ACL entries, having three options makes sense for
the same reason as in parliamentary procedure one can vote yes, no, or abstain. An
ACL entry that abstains (neither allows nor denies a permission) is permitting the
other ACL entries to decide the question. In Figure 7.16, simply being a member of
the Users group is not determinative one way or the other with regard to creating files.
A member of the Users group may be able to create files in this folder, depending on
what the other ACL entries say and depending on what other groups the user belongs
to. This is the meaning of having neither the Allow box nor the Deny box checked. If
all applicable ACL entries abstain, then access is denied.

What if one ACL entry that applies to a user specifies that a permission should
be allowed, while another ACL entry that also applies to the same user specifies that
the permission should be denied? In this case, a key difference arises between ACLs

hailperin-163001 book October 18, 2005 11:18

7.4 Representing Access Rights ! 249

Allow Deny Neither

Allow Allow Deny Allow
Deny Deny Deny Deny
Neither Allow Deny Neither

Figure 7.17 This table shows the rule for combining two Microsoft Windows ACL entries. The same
rule is used repeatedly to combine any number of ACL entries. However, if the final result of combining
all applicable entries is Neither, it is treated as Deny. (As the text explains, a different rule is used at
a lower level. This figure explains the usual interface.)

and parliamentary procedure: the majority of the non-abstaining votes does not win
with ACLs. Instead, a single vote to deny access will overrule any number of votes to
allow access, much like the veto power possessed by permanent members of the United
Nations Security Council. This allows an ACL to include exceptions; for example, all
members of some group can be given access (without listing them individually), except
one specific user who is denied access. Figure 7.17 summarizes the rule for combining
ACL entries.

Within the Windows kernel, ACL entries are actually combined according to a
different rule. If one ACL entry that applies to a user specifies that a permission should
be allowed, while another ACL entry that also applies to the same user specifies that
the permission should be denied, the kernel obeys whichever ACL entry is listed first.
However, the API procedures that are generally used to maintain ACLs take care that
all Deny entries precede any Allow entries. This effectively results in the rule shown
in Figure 7.17, that a Deny entry always overrides an Allow entry. In particular, the
graphical user interface shown in the preceding figures makes use of the API that gives
precedence to Deny entries. In Exercise 7.8, you can analyze the relative merits of the
two rules for combining ACL entries.

Although details vary from operating system to operating system, the Microsoft
Windows version of ACLs is typical of all systems with full-fledged ACLs, dating back
at least to Multics in the 1960s. Rather than looking at any other examples with full
ACLs, I will consider a popular alternative, which is to use a highly restricted form of
ACL. In particular, I will explain the file permissions portion of the POSIX specifica-
tion, implemented by Linux, Mac OS X, and other versions of UNIX. (Some POSIX
systems also offer the option of full ACLs; I will focus here on the traditional, required
permission system.)

In common with Microsoft Windows, POSIX has a concept of user groups. Each
file is owned by a particular user (usually its creator) and also has an owning group.

hailperin-163001 book October 18, 2005 11:18

250 ! Chapter 7 Processes and Protection

The ACL for any file always has exactly three entries:

• One entry specifies the permissions for the user who owns the file.

• The second entry specifies the permissions for all users who are members of the
owning group, except for the owning user.

• The third entry specifies the permissions for all other users, who are neither the
owner nor members of the owning group.

Note that unlike Windows, where several ACL entries may contribute to a single user’s
permissions, only one of these three will apply to any user. Thus, each permission can
be treated in a binary fashion (granted or not granted), without need for the three-
way distinction of allow/deny/neither. (Because of the way the three ACL entries are
defined, you can perform odd stunts like giving everyone but yourself permission to
access one of your files.)

Each of the three entries in a POSIX ACL can specify only three permissions: read,
write, and “execute,” which as you’ll see can also mean “traverse directory.” These
three permissions are abbreviated by the single letters r, w, and x. A file has a total of
nine permission bits: r, w, and x for the owner; r, w, and x for the rest of the owning
group; and r, w, and x for everyone else. You can see these nine bits in the output from
the ls directory listing program, when given the -l option (the letter l indicates you
want a long-format listing, with lots of information). For example, in listing my home
directory, I see a line that starts with

drwxr-x--- 4 max mc27fac

followed by the size, date, time, and name of the directory entry. The letter d at the
beginning indicates that this is an entry for a subdirectory. The next nine characters
are the permissions; I have full rwx permission, the other members of group mc27fac

have only r and x (but not w), and other users have no permissions at all.
For an ordinary file, the rwx permissions are relatively self-explanatory. However,

many people are confused as to what they mean for directories. For a directory:

• The r permission allows its possessor to find out what names are listed in the
directory. This permission is neither necessary nor sufficient to get access to one of
those named files. With only the r permission on one of your directories, another
user would just be able to observe your taste in filenames.

• The w permission allows its possessor to create, delete, or rename files in the direc-
tory. Note, in particular, that a user who doesn’t have permission to write into one
of your files may still have permission to delete the file and create a new one with
the same name.

hailperin-163001 book October 18, 2005 11:18

7.4 Representing Access Rights ! 251

• The x permission allows its possessor to use a filename in the directory as part
of getting access to a file, subject to that file’s own permissions. The x permis-
sion allows a user to traverse a directory, that is, to look up a given name in the
directory and determine what it is a name for. Even without the r permission, a
user can access one of the files in the directory if the user already knows (or can
guess) its name, has the appropriate permission to the file itself, and has the x

permission.

As a simple rule, you should always use the r and x permissions together on direc-
tories, unless you really know what you are doing. Giving x permission without r can
be very frustrating, because it will break many modern programs with graphical user
interfaces. These interfaces present users with a list of files to pick from, rather than
making the user type the filename in. The only value of x without r is for security,
but a security design that relies on other users not knowing your obscure choices of
filenames is probably not very wise. On the other hand, x without r is at least more
useful than r without x. You would need to think quite creatively to find value in
letting people see your filenames but not make any use of them. (In Exercise 7.10,
you have the opportunity to be that creative.) For most normal purposes, directory
permissions should be rwx (for yourself, and sometimes for a group you really trust
a lot), r-x (for others you want to use the directory), or --- (for others you want to
keep out).

As described in the preceding bulleted list, having w permission on a directory is
quite powerful, in that it allows you to delete and replace an existing file within that
directory, even if you couldn’t overwrite the file. However, this power can be kept in
check. Each directory has a bit, alongside the nine rwx permission bits constituting
the ACL, which can be used to limit the power of the w permission. If this so-called
sticky bit is set, then a file may be deleted from the directory only by the owner of
the file, the owner of the directory, or the system administrator. The same limitation
applies to renaming files.

Access control lists, of either the full variety or the simplified owner-group-other
kind, are generally used in conjunction with capabilities. When a POSIX process wants
to read or write a file, for example, it starts by using the open procedure to translate
the filename into a file descriptor, which refers to a capability.

The open procedure takes as arguments both the filename (a string) and an integer
encoding a set of flags. That set of flags contains information as to whether the process
intends to read the file, write the file, or both. For example, open("alpha/beta",
O_RDONLY) would attempt to obtain a read-only capability for the file named beta in
the directory named alpha in the current directory.

hailperin-163001 book October 18, 2005 11:18

252 ! Chapter 7 Processes and Protection

The open procedure uses the process’s user and group credentials to check whether
the process has the necessary permissions: x permission on the current directory and
the subdirectory named alpha, and r permission on the file named beta within
alpha. If the process has executed a setuid program, these permission checks are done
using the effective user ID, adopted from the program’s ownership information. Sim-
ilarly, the permission checks take the effective group ID from the program’s owning
group if an analogous set group ID (setgid) feature is used. Assuming the permissions
are granted, the open procedure creates a read-only capability for the file and returns
an integer file descriptor providing access to that capability. From this point on, the
ACLs cease to be relevant. The x bit could be removed from alpha or the r bit from
beta, and the open file descriptor would continue to function. That is, an open file
descriptor is an irrevocable capability, as described in Section 7.4.2.

7.5 Alternative Granularities of Protection
Sections 7.3 and 7.4 showed how an operating system can protect processes from
unwanted interaction with one another. Section 7.5.1 considers the possibility of pro-
viding analogous control over interaction even for objects within a single process,
and Section 7.5.2 considers protecting entire operating system environments from
one another, within a single computer.

7.5.1 Protection Within a Process
When I described what a process is, I indicated that it is the unit of granularity for pro-
tection provided by the operating system. That is, operating systems protect processes
from each other, but generally do not protect components within a process from each
other. This does not mean that protection within a process isn’t important or can’t be
achieved. Instead, such protection is normally a job for middleware, rather than for
the operating system.

Consider, for example, the Java objects that are used in application servers. Because
a large number of objects collaborate within web-based applications, you wouldn’t
want to pay the overhead cost of an operating system process per object. Instead,
application servers allow numerous objects to exist within a single operating system
process. On the other hand, an application server may contain objects assembled
together from many different sources. If they were not protected from one another,
you would have the same sort of debugging and security nightmares that you would
have if processes were unprotected.

In order to protect objects from one another, even if they coexist within a single
process, the process runs the Java Virtual Machine (JVM), which provides protection

hailperin-163001 book October 18, 2005 11:18

7.5 Alternative Granularities of Protection ! 253

and other basic support for Java objects. Thus, the JVM provides a good example of
how middleware can provide protection for components within a process.

To protect Java objects from one another, the JVM makes sure that the Java code it
is executing obeys certain restrictions. A typical restriction is that no method may ever
read from an uninitialized local variable, that is, one into which it has not previously
written. This prevents the method from picking up some value left in memory by a
previously executed method, which might have been in an object from a different
source.

In principle, the JVM could enforce its restrictions by carefully monitoring each
step of the Java program as it is executing. For example, the JVM could maintain a set
of initialized local variables as the program runs. Any assignment to a local variable
would add it to the set. Any use of a local variable would be preceded by a check
whether the variable is in the set.

The problem with this approach is that it would make all Java code run like molasses
in winter. Each instruction in the program would be preceded by hundreds of other
instructions checking whether various restrictions were satisfied. As such, the program
would be running hundreds of times more slowly.

Therefore, real JVMs take a smarter approach. As each class is loaded, a JVM compo-
nent called the verifier mathematically proves that everywhere along all paths through
the code, no uninitialized variable is ever read. The verifier also checks other restric-
tions similarly. Having proved that all paths are safe (in the checked senses), the JVM
can then run the code full speed ahead.

The verifier cannot check potential paths through the code one by one, because
there may be a great number of paths, or even infinitely many. (Consider, for example,
a method with a while loop in the middle. There is one path from the beginning of
the method to the end that goes around the loop zero times, one that goes around the
loop one time, and so forth.) Therefore, the verifier constructs its safety proofs using
the same sort of dataflow analysis that compilers have traditionally used for optimiza-
tion. This analysis involves finding the greatest fixed-point solution of a system of
simultaneous equations. An important general theorem regarding dataflow analysis
shows that the greatest fixed-point solution gives a set of security guarantees that can
be counted on to hold at a point, independent of which path is taken to that point.
Therefore, the verifier can check all paths for safety at once. In Exercise 7.13, you will
prove this theorem.

7.5.2 Protection of Entire Simulated Machines
You have seen that the JVM allows you to zoom in and create a whole collection of
protected domains within a single operating system process. Similarly, you can zoom

hailperin-163001 book October 18, 2005 11:18

254 ! Chapter 7 Processes and Protection

out and treat a whole operating system, complete with all its processes, as just one
protected domain among many within a larger Virtual Machine Monitor (VMM). A VMM
uses the computer it runs on to simulate the execution of several similar computers,
each of which can then run its own operating system with its own processes.

Two commercially significant VMMs are VMware’s ESX Server and IBM’s z/VM.
ESX Server uses IA-32 hardware to simulate multiple IA-32 servers; for example, a sin-
gle four-way multiprocessor server might simulate six uniprocessor servers, each with
its own operating system, such as Microsoft Windows or Linux. The six simulated
processors take turns executing on the four real processors, under control of the VMM.
Similarly, z/VM uses IBM’s mainframe zSeries to simulate multiple zSeries machines,
each of which could be running one of IBM’s legacy mainframe operating systems or
could be running Linux.

To see how a VMM can be used, you can look at the example in Figure 7.18. Each
box indicates a hardware or software component. At the bottom is the Xeon hard-
ware, a member of the Pentium family, which supplies the IA-32 interface upward to
the next layer. That next layer is a VMM (specifically the ESX Server), which simulates
three virtual machines, each also providing the IA-32 interface. The leftmost virtual
machine is running Linux 2.6, the middle one is running Windows 2003, and the
rightmost one is running an older version of Linux, 2.4. The presence of Microsoft
Windows and Linux on the same hardware may have come about through server con-
solidation; perhaps two different groups within the enterprise had settled on different
software environments but now are being hosted on common hardware to reduce
total cost of ownership. The two versions of Linux may reflect a similar story, or may
be a case where a new version is being tested while an older version continues to be
in production use. In the particular case shown in the figure, the Linux 2.6 virtual

Hardware including Xeon processor

VMware ESX Server

Linux 2.6 Windows 2003 Linux 2.4

Apache SQL Server IIS Oracle Apache

IA-32

IA-32 IA-32 IA-32

POSIX Win32 Win32 POSIX POSIX

HTTP ODBC HTTP ODBC HTTP

Figure 7.18 This example shows a VMM, the VMware ESX Server, supporting multiple operating
systems. The label within each box identifies a component, whereas the label on each horizontal
dividing line identifies an interface. Unlike the operating systems, the VMM provides upward the
same IA-32 interface that it relies upon from below.

hailperin-163001 book October 18, 2005 11:18

7.5 Alternative Granularities of Protection ! 255

machine is running a single process (the Apache web server), whereas the other two
virtual machines are running two processes apiece (in each case, a database server and
a web server).

Notice that processes can benefit from two levels of protection, one provided by
the operating system and another by the VMM. For example, Windows 2003 is respon-
sible for isolating the SQL Server process from the IIS process. If someone finds a way
to subvert Windows’s protection mechanism, this isolation may fail. However, the
processes running on the other two virtual machines will remain isolated, so long as
the ESX Server software continues to do its job. Consider another explanation for why
two versions of Linux are running on the same machine: one group, with a lot at stake,
might choose to run the latest version with all available security patches, while another
group, with less at stake, might choose to stick with an older, less secure version so
as to avoid the disruption of an upgrade. The high-stakes group need not fear conse-
quences from an attacker breaking into the low-stakes group’s system any more than
if the two were on different hardware machines. The VMM provides that assurance.

The operation of a VMM is similar to that of an operating system. Like an operating
system, it uses scheduling to divide processing time and uses page mapping to divide
memory. The key difference is that it doesn’t support any higher-level APIs, such as
the file operations found in POSIX or Win32. Instead, the VMM supports an interface
similar to a real machine’s, complete with I/O devices.

Because the virtual machines use the same instruction set architecture as the real
hardware, the VMM does not need to simulate their execution on an instruction-by-
instruction basis. Most instructions can be directly executed by the real hardware. The
only issue is with privileged instructions, of the kind used by operating systems for
such tasks as managing I/O hardware or changing page tables.

Recall that processors generally have two operating modes, a kernel mode in which
all instructions are legal, and a user mode, in which dangerous instructions trap to
an operating system handler. I need to explain how these two modes can be used to
support three levels of execution: the VMM, the operating system, and the application
processes.

The VMM runs in kernel mode. When the underlying processor executes instruc-
tions from one of the virtual machines, on the other hand, it does so in user mode.
That way, the VMM is in complete control and can protect the virtual machines from
one another. However, the virtual machines still need to support a simulated kernel
mode so that they can run operating systems. Therefore, the VMM keeps track of each
virtual machine’s simulated mode, that is, whether the virtual machine is in simulated
kernel mode or simulated user mode.

If a virtual machine executes a privileged instruction (for example, to manage
I/O hardware), a trap to the VMM occurs, as shown in Figure 7.19. The VMM then

hailperin-163001 book October 18, 2005 11:18

256 ! Chapter 7 Processes and Protection

OS
(user mode
simulating

kernel mode)

Simulate
the

privileged
instruction

VMM
(kernel mode)

VMM
(kernel mode)

Application
(user mode
simulating
user mode)

(a) (b)

OS
(user mode
simulating

kernel mode)

trap return

simulate
a trap

trap

Figure 7.19 When an attempt is made to execute a privileged instruction within a virtual machine, a
trap to the VMM occurs, whether the virtual machine is executing operating system code or application
code, because the hardware is in user mode in either case. However, the VMM knows whether
the virtual machine is in simulated kernel mode or simulated user mode and responds accordingly.
In (a), the virtual machine is in simulated kernel mode, so the VMM simulates the privileged instruction
and then returns from the trap. In (b), the virtual machine is in simulated user mode, so the VMM
simulates the trap that would have occurred on a real machine: it switches to simulated kernel mode
and jumps to the operating system trap handler within the virtual machine.

checks whether the virtual machine was in simulated kernel mode. If so, the privi-
leged instruction was attempted by the virtual machine’s operating system, and the
VMM carries out the intent of the instruction, for example, by doing the requested
I/O. If, on the other hand, the virtual machine was in simulated user mode, then the
VMM simulates a trap within the virtual machine by switching it to simulated kernel
mode and jumping to the trap handler within the virtual machine’s operating system.
In Exercise 7.14, you can consider how the trap handler within the virtual machine’s
operating system can later return control to the application program.

One particularly interesting design question is how virtual memory is handled.
The operating system running within a virtual machine sets up a page table map-
ping virtual page numbers into what it thinks of as physical page frame numbers.
However, the VMM does another level of mapping, translating the virtual machine’s
“physical” page frames into the truly physical page frames of the hardware. That way,
the VMM can allocate the hardware’s memory among the virtual machines and can
do tricks like using copy on write (COW) to transparently share memory across the
virtual machines.

hailperin-163001 book October 18, 2005 11:18

7.6 Security and Protection ! 257

In order to efficiently support this double translation of addresses, the VMM com-
putes the functional composition of the two address translations and provides that
composition to the hardware’s MMU. That is, if the virtual machine’s simulated page
table would map A into B, and the VMM wants to map B into C, then the VMM puts
a translation directly from A to C into the real page table used by the hardware MMU.

7.6 Security and Protection
Protection plays an essential role in security. If I were to take the title of this section
literally, it could be a very long section. Instead, I will simply highlight a few key
security issues directly raised by the material in this chapter.

Perhaps the most important take-home message is that although protection is
essential to security, it is not the same as security. The two are easily confused. For
example, security includes maintaining confidentiality, and protection includes the
use of access control lists to limit read access permissions. Surely these are the same,
right? Wrong. If the data in question is on a disk drive that is in an unlocked room,
then all the access control lists in the world won’t keep it confidential. An adversary
simply needs to steal the drive and read it on his own machine, which is programmed
to ignore ACLs. In Chapter 11, I will address some of the broader security picture.

Many nasty security pitfalls arise from the distinction between a principal and a
subject, or in simplified terms, between a user and a process. A process that is operating
with the credentials of a user may carry out actions that the user would not approve
of. One way this could happen is if the user authentication system is weak enough
for someone else to log in as you. I will not consider that topic further here, instead
concentrating on the problems that remain even if the system knows which human
is behind each keyboard.

In discussing POSIX processes, I mentioned that user credentials are retained when
a process forks and also when it executes a program. Thus, any program you run will
be acting with your credentials. (The same is true in other systems, such as Microsoft
Windows.) This immediately raises the possibility of a Trojan horse, a program that
has some apparent benign purpose but that also has a hidden nefarious intent. Sup-
pose someone gives you a program and tells you it shows a really funny animation of
Bart Simpson impersonating Bill Gates. You run it, enjoy the animation, and chuckle
merrily. Unfortunately, you aren’t the only one laughing; so is the programmer who
knows what else the program does other than showing the animation. Remember:
whatever the program does, “you” are doing, because the process is acting with your
user credentials. If you have the ability to send all your private data over the network
(which you probably do), then so does the Trojan horse.

hailperin-163001 book October 18, 2005 11:18

258 ! Chapter 7 Processes and Protection

One variant of the general Trojan horse theme is the email worm. Suppose you
receive an email with an attached program. When you run the program, it can do
anything it wants with your credentials. Suppose what it does is send new email to
everyone in your address book, with the same attachment. (After all, the protection
system thinks you have every right to read your address book and to send email with
your return address.) In this way, the same malicious program can be spread to many
computers all over the world. Of course, the worm can perform other actions as well.

Suppose you never knowingly run gift programs. Does that make you safe from
Trojan horses? Not necessarily. Recall my discussion of execlp. I mentioned that it
looks through a sequence of directories until it finds the program file, just as the shell
does. This search means that even when you type in as simple a command as ps (to
list your processes), you don’t necessarily know what program is being run; it might
not be /bin/ps, if some other program named ps is in one of the other directories
that comes before /bin in the search path. In particular, it was once common for
UNIX users to have search paths that started with the current directory (named .),
before any system-wide directories. That has ceased to be popular, because it is an
open invitation to Trojan horses planted by adversaries who don’t have write access
to any of the system-wide directories. Even putting the current directory last in the
search path (as many users still do) is not completely safe; a clever adversary could
plant a Trojan horse named with a common misspelling or with a program name
that is installed on some systems, but not the one under attack. The only really safe
alternative is to leave the current directory out of your search path. When you want to
run a program in your current directory, you will need to specify an explicit pathname.
For example, to run the microshell program from Figure 7.6, you might compile it
in your current directory and then run ./microshell.

An attacker who wants to plant a Trojan horse for you to run may not even need to
take advantage of search paths, if one of the programs you run has file access permis-
sions set so that other people can overwrite the file with a modified version. Similarly,
if the directory containing the program is writable, the program can be deleted and
replaced. Setting programs (or the containing directories) to be writable seems like such
an obvious invitation for Trojan horses that you might find it difficult to imagine such
situations arise. Yet I have repeatedly encountered installer programs for commercial
application software that set the installed programs or directories to be writable by all
users of the system. In the face of such installers, a system administrator needs to be
vigilant and manually change the permissions.

The Trojan horse problem is far more dangerous in a system with Discretionary
Access Control (DAC) than one with Mandatory Access Control (MAC), because there
is far more that “you” (actually, the Trojan horse) can do in a DAC system. For exam-
ple, in a MAC system that enforces military classification levels, no Trojan horse can

hailperin-163001 book October 18, 2005 11:18

7.6 Security and Protection ! 259

possibly read from a top secret file and then write a copy into an unclassified file; the
operating system forbids any process from reading and writing in this way. Notice
that using MAC rather than DAC is only partially intended to guard against com-
puter users making unwise decisions. Far more, MAC is guarding against the organi-
zation needing to trust all programs’ authors. (Trust in the people running the pro-
grams can come from nontechnical sources, like keeping an eye out for employees
who seem to have too much money. For external program authors, this would be more
difficult.)

Another security pitfall comes from the ability of a setuid program to propagate
its owner’s credentials. Suppose that an adversary briefly has the ability to act with
your credentials, using some means other than setuid. (This could be through a Trojan
horse, but alternatively the adversary might simply use your keyboard while you are
getting coffee.) You cannot assume that the adversary’s ability to do damage is over
when the initial access method is removed (when you return from getting coffee). A
smart adversary will use the brief access to create a setuid shell, owned by you and
executable by the adversary. Then, at any convenient later time, the adversary can
run any programs whatsoever with your credentials. A real-world analogy would be if
leaving your door unlocked made it easy for a burglar to retrofit a secret entrance into
your house.

System administrators fight back against unwanted setuid programs with measures
such as turning the setuid feature off for file systems that normal users can write into,
as well as regularly scanning the file systems looking for setuid files. These measures
are valuable but are treating a symptom of a bigger problem. The setuid mechanism,
in its elegant generality, is a fundamental mismatch for most organizational security
policies. In most organizations, authorization can flow only from the top down; low-
level employees are not empowered to pass their authority on to someone else.

Setuid programs raise an additional set of issues, which are in a sense the oppo-
site of the Trojan horse problem. Security problems arise whenever the person pro-
viding authority is different from the person deciding how that authority will be
used. A Trojan horse tricks the user running the program into providing credentials
for actions specified by the program’s author. Conversely, a setuid program provides
the author’s credentials, but might unintentionally allow the user running it to con-
trol what actions it carries out. Either way, there is a mismatch between the source of
authority and the source of control.

Programming oversights explain most cases where a setuid program cedes con-
trol to the user running it. For example, suppose the designer of a setuid program
wants it to print out a file and wants the user running the program to specify the
name of the printer (but not of the file). The program might execute a shell command
like lpr -Pprintername filename, where the printername comes from the user’s input

hailperin-163001 book October 18, 2005 11:18

260 ! Chapter 7 Processes and Protection

and the filename is controlled by the setuid program itself. This seemingly innocent
command could be compromised in several ways, such as the following:

• If the adversary can control the directory search path, the lpr command might
be executing a program of the adversary’s choice, rather than the normal printing
command.

• If the adversary can input a printer name that contains a space, the print command
might gain an extra argument, which would be taken as another filename to print,
this one specified by the adversary.

• If the adversary can input a printer name that contains a semicolon, the print
command might turn into two separate commands, one to run lpr and one to
run some totally different program of the adversary’s choice.

UNIX system programmers have developed a whole body of lore on how to write
setuid (or setgid) programs without falling into traps such as the preceding example.
Some of this lore addresses particular pitfalls, such as interpolating arbitrary user input
into shell commands. However, there are also some more fundamental steps you can
take to reduce the risk of a program being exploited. Keep in mind that risk is a function
both of the chance of exploitation and of the damage that can be done:

• You can reduce the opportunity for exploitation by making each setuid (or setgid)
program as small and simple as possible and by making it executable by as few
users as possible.

• You can reduce the damage an exploitation could do by having each setuid (or
setgid) program owned by a special user (or group) that exists just for that one
purpose and that has only the relevant permissions. The program should not be
owned by a normal user or group that has many other unrelated permissions. (The
worst choice is if the setuid program is owned by the special system administration
account, root, which has permission to do absolutely anything.)

On the positive side, setuid programs can be very valuable in enforcing security
policies that go beyond what basic owner-group-other permissions (or even full ACLs)
can represent. For example, suppose you want to allow a group of employees to write
into a file, but only with the following limitations:

• These employees may only add entries to the end of the file, not modify existing
entries.

• Each entry must include a time stamp and the name of the employee making the
addition.

hailperin-163001 book October 18, 2005 11:18

7.6 Security and Protection ! 261

• These employees may make additions only during normal business hours, when
they are subject to physical observation, so as to provide greater protection against
impersonation.

A sophisticated protection system might have special accommodation for some of
these needs; for example, you saw that Microsoft Windows has separate permissions
for “append data” versus “write data.” However, it is unlikely that any system would
directly support the whole package of application-specific policies. Instead, you could
funnel this group’s access through a setuid program that enforces the policies. Database
programmers commonly use a similar technique: rather than granting users permis-
sion to directly access a table, they grant the users permission to run a stored procedure
or to access a specialized view of the table.

Because I showed Microsoft Windows’s ACLs through the graphical user interface,
I have a good opportunity to point out the importance of user interface design to
security. A protection system does not enhance security by virtue of being able to
correctly enforce a security policy; instead, it enhances security only if it is actually
used to correctly enforce the policy. In general, the more sophisticated a mechanism,
the lower the chance that users will actually figure out how to use it correctly. If they
make mistakes that result in overly restrictive protections, someone will notice and
complain. If they make mistakes that result in insufficiently restrictive permissions, no
one is likely to complain. Thus, the user interface design must help the user manage
complexity and reduce the chance of errors. Microsoft has done this in several ways,
such as providing a simplified interface to common groupings of permissions, with
the individual underlying permissions visible only on request. Also, the uniform rule
that deny permissions take precedence over allow permissions is less likely to result in
accidental underprotection than the lower-level rule of processing the allow and deny
permissions in a user-specified order.

My description of the meaning of rwx permission bits on directories ignored an
important issue. When I discuss file naming in Chapter 8, you will see that a single
file can have multiple filenames, listed in multiple directories. Thus, saying that the
x permission bit on a directory controls access to files in that directory is an oversim-
plification. This directory permission controls whether names in that directory can be
used to access files—but the same files may in any case be accessible through other
names in other directories. Unless you know that a file only has one name, the only
sure-fire way to restrict its access is with its own permission bits, not with an ancestor
directory’s x bit.

In discussing Virtual Machine Monitors, I remarked that a VMM can keep processes
running in separate virtual machines isolated from one another, even in the face of a
security breach in one or both virtual machines’ operating systems. This sounds on the

hailperin-163001 book October 18, 2005 11:18

262 ! Chapter 7 Processes and Protection

surface like an example of defense in depth, the general security principle of providing
multiple independent safeguards, so that even if one is breached, the others prevent
a system security failure. However, this view is not entirely correct, because a VMM
has complete power over the virtual machines; if the VMM’s security is breached, the
security of the operating systems becomes irrelevant. Therefore, isolating two processes
with a VMM and operating systems will not necessarily result in better protection than
an operating system alone, because an attacker need only subvert the VMM. Of course,
it may be that the VMM is more secure than the operating system, because it is much
simpler. However, the enhanced security, if there is any, comes from substitution of
a better protection mechanism, rather than from the cumulative contribution of an
additional protection mechanism.

Exercises
7.1 Consider how fork is typically used today. On a uniprocessor system, would it

make more sense to schedule the child process to run immediately after a fork
or continue to run the parent process? Explain why. Be sure to take COW into
account.

7.2 I described access matrices as containing access permissions for individual
processes, rather than only for users. Give an example of how a POSIX process
could have access permissions different from those of any user.

7.3 What is the difference between a DAC system and a MAC system? Give an exam-
ple of a circumstance under which you would prefer a DAC system, and explain
why. Give an example of a circumstance under which you would prefer a MAC
system, and explain why.

7.4 Explain the relationship between access matrices, C-lists, and ACLs.

7.5 Explain the relationship between handles, C-lists (or handle tables), and capabil-
ities in a system like Microsoft Windows.

7.6 Compare C-list capabilities with addressable capabilities. Which is more power-
ful for the application programmer? Which is simpler for the operating system
designer? Justify your answers.

7.7 Suppose the processes on a computer occupy a total of 8 GB of virtual memory,
half of which is occupied by addressable capabilities. Suppose that each capability
is represented by a random string of 256 bits, subject to the constraint that no two
of the capabilities are equal. What is the probability that a randomly generated
string of 256 bits would equal one of the capabilities?

7.8 On a Microsoft Windows system, suppose there are two user groups, big and
small, with the property that all users who belong to small also belong to big.

hailperin-163001 book October 18, 2005 11:18

Exercises ! 263

Suppose, further, that user jdoe belongs to small (and hence to big). You are
not to know what other users belong to the groups.
(a) Explain how a file’s ACL could be set to allow read access only to users who

are members of big but not of small.
(b) Explain why the file’s ACL cannot be modified using the ordinary user inter-

face to additionally allow jdoe read access, without changing any other user’s
access rights.

(c) Explain how the alternative rule used within the Windows kernel for combin-
ing allow and deny permissions would make the goal stated in the previous
part possible.

(d) Make an argument why this alternative is superior to the one used in the
Microsoft Windows interface.

(e) Make an argument why the permission combining rule from the Microsoft
Windows interface is superior to the alternative from the kernel.

(f) Which argument do you find more persuasive? Why?

7.9 For combining permissions from multiple applicable ACL entries, it is desirable
to use a combining operation that is associative and commutative.
(a) Show that the combining operation specified by the table in Figure 7.17 on

page 249 is associative and commutative.
(b) Show that if the operation is changed so that Neither combined with Neither

yields Deny, the operation is no longer associative.

7.10 Think creatively and come up with a scenario where it would be valuable for the
owner of a POSIX directory to grant someone r permission to that directory but
not x permission.

7.11 On a POSIX system, a file and a directory are both owned by user 37 and group
53, and both have permissions rw-r-x--x; that is, rw- for the owner, r-x for
the group, and --x for others. The members of group 53 are users 37, 42, and 71.
(a) Which user(s) may read the file?
(b) Which user(s) may write the file?
(c) Which user(s) may execute the file?
(d) When the file is executed by user 85, what are the two possibilities for the

effective user ID?
(e) What determines which of these two possible user IDs is used?
(f) Which of the following are true?

i. User 37 may list the contents of the directory.
ii. User 37 may use the directory in a pathname to access files under it, sub-

ject to those files’ permissions.
iii. User 42 may list the contents of the directory.

hailperin-163001 book October 18, 2005 11:18

264 ! Chapter 7 Processes and Protection

iv. User 42 may use the directory in a pathname to access files under it, sub-
ject to those files’ permissions.

v. User 85 may list the contents of the directory.
vi. User 85 may use the directory in a pathname to access files under it,

subject to those files’ permissions.

7.12 What is the function of the sticky bit on a directory in a POSIX system?

7.13 In this exercise, you will prove a theorem relied upon by the JVM verifier. Let S
be a set of security properties, and let (V,E) be a directed graph with vertices V
and edges E ⊆ V × V. (The graph represents a program; the vertices are points in
the program and the edges are possible control flows.) Let v0 be a distinguished
element of V, the start vertex. If the edge (u,v) is in E , one says u is a predecessor
of v; the set Pred(v) consists of all predecessors of v. For each edge (u,v) ∈ E , let
fuv be a monotone function from 2S to 2S . That is, fuv is a function such that if
A ⊆ B ⊆ S, then fuv(A) ⊆ fuv(B) ⊆ S. If v0v1 · · · vn is a (possibly cyclic) path in
the digraph from the start vertex v0 to vn, then define the security properties that
hold after the path to be H(v0v1 · · · vn) = fvn−1vn(fvn−2vn−1 (· · · fv0v1 (∅) · · ·)). Define
the security properties that are guaranteed at vertex v to be G(v), where G is
some function that satisfies the following equations:

G(v0) = ∅
G(v) =

⋂

p∈Pred(v)

fpv(G(p)), v &= v0.

Use induction on the length of the path v0v1 · · · vn−1vn, n ≥ 0, to prove that
G(vn) ⊆ H(v0v1 · · · vn−1vn), that is, after any path leading to vn, all the security
properties guaranteed at vn hold.

7.14 Part (b) of Figure 7.19 on page 256 shows how a hardware-level trap to the VMM is
used to simulate a trap to the operating system running within a virtual machine.
The accompanying text also describes this situation. When the trap handler in
the operating system finishes and executes a return-from-trap instruction, how is
control transferred back to the application program? What mode changes, both
real and simulated, occur?

Programming Projects
7.1 Write and test a variant of the forker program from Figure 7.1 on page 224, in

which as much code as possible is shared between the parent and child processes.

7.2 Write a variant of the forker program from Figure 7.1 on page 224, in which
the parent and child processes are more dissimilar from one another than in the
given program.

hailperin-163001 book October 18, 2005 11:18

Exploration Projects ! 265

7.3 Learn enough C++, if you don’t already know it, to be able to read in a line of
text and break it into whitespace-separated words. Then modify the microshell
of Figure 7.6 on page 229 to accept multi-word commands and use execvp to
pass the words as command line arguments.

7.4 Modify your microshell from the previous project so that if the last word in a
command is &, that word is not passed as a command line argument. Instead,
your program should skip the waitpid.

7.5 From the behavior of the forker program in Figure 7.1 on page 224, you can
tell that each parent and child process gets its own copy of the loopCount vari-
able. Are the two copies at equal virtual addresses or different virtual addresses?
Testing this might help you determine whether you are using a single address
space system or a multiple address space system. Modify the program so that
each process prints out &loopCount, the address of loopCount. What can you
conclude from the results you observe?

Exploration Projects
7.1 Figure 7.20 contains a simple C program that loops three times, each time calling

the fork system call. Afterward it sleeps for 30 seconds. Compile and run this
program, and while it is in its 30-second sleep, use the ps command in a second
terminal window to get a listing of processes. How many processes are shown
running the program? Explain by drawing a “family tree” of the processes, with
one box for each process and a line connecting each (except the first one) to its
parent.

#include <unistd.h>

int main(int argc, char **argv){
int i;
for(i = 0; i < 3; i++){ /* loops 3 times */

fork(); /* each time calling fork */
}
sleep(30); /* then sleeps 30 seconds */

}

Figure 7.20 This C program, multiforker.c, loops three times and each time forks. At the
end, it sleeps 30 seconds so that you have time to run the ps command and see how many copies
of the process are running.

hailperin-163001 book October 18, 2005 11:18

266 ! Chapter 7 Processes and Protection

7.2 On a Linux or UNIX system, read the documentation for the find command. Use
it to search for setuid or setgid programs. In as many cases as possible, determine
why the program needs to be setuid or setgid. In each case, try to determine
whether the file is owned by a special-purpose user or group that owns only the
file and a few related ones.

7.3 Browse the web for cases where buggy setuid programs have constituted security
vulnerabilities. Write up a summary of the cases you find; look in particular for
recurrent themes.

7.4 Occasionally an adversary will gain control of an FTP or web server from which
widely used software is distributed. Explain why this is a particular source of
concern, in terms of one of the security issues discussed in this chapter. Read
CERT Advisory CA-2002-28 (which you can find on the web) for an example.
What countermeasures are suggested in that advisory? How does each of them
help mitigate this sort of problem?

7.5 On a Linux or UNIX system, use the same find program as in Exploration
Project 7.2 to search for files that are executable by someone and writable by
all users, as well as to identify directories that are writable by all users. Do you
find any opportunities for the installation of Trojan horses?

7.6 Suppose you carefully check the source code of all programs you run, and you
make sure to run only versions that you have compiled yourself from the source
code you check. Are you then safe against Trojan horses? Think this through for
yourself, and then read Thompson’s Turing Award lecture, cited in the notes at
the end of this chapter. Write a brief summary explaining how Thompson has
influenced your thinking on this topic or why he hasn’t.

Notes
The idea that a process is a group of threads sharing a protection context dates back
at least to a seminal 1966 paper by Dennis and Van Horn [44]. The terminology
has shifted over the decades, however. They (and other early authors) used the word
“process” for what today is called a thread and “computation” for what today is called
a process.

You can supplement my brief introduction to the POSIX API for process manage-
ment in two ways. One is by reading the official documentation; the POSIX standard
is on the web at http://www.opengroup.org, and the documentation for specific imple-
mentations (such as Linux) is also easily available. The other approach, which is likely
to be more useful at first, would be to read a book on the topic. Two good choices are
those by Stevens and Rago [123] and by Robbins and Robbins [105].

hailperin-163001 book October 18, 2005 11:18

Notes ! 267

Multics was a very influential multiple address space system. Although processes
could share individual memory segments (named with filenames in a directory tree),
each process used its own segment numbers for addressing, rather than the shared
segment names. Segments were protected using a combination of ACLs and capabil-
ities. See, for example, Daley and Dennis’s article [38] and the later retrospective by
Saltzer [110].

Another interesting feature of the Multics system, which made its way into the
IA-32 architecture, was the use of intermediate processor protection modes between
the kernel and user modes I describe. The availability of multiple protection modes
joins segmentation as an underutilized feature of the IA-32 architecture.

The case for single address space systems has been made by Chase et al. [26]. The
Itanium mechanism is described in Intel’s documentation [75]. A good source of infor-
mation on the AS/400 is Soltis’s book [119]. Other relevant sources are papers on the
System/38 [20, 118, 73].

Harrison, Ruzzo, and Ullman [64] use the access matrix model to show that theo-
retical results independent of specific protection systems are pessimistic. As mentioned
in the text, they showed some important problems to be undecidable and others to be
PSPACE-complete. A decision problem is PSPACE-complete if it satisfies two criteria.
First, the problem must be in PSPACE, which means it is solvable using a polynomially-
bounded amount of memory and unlimited time. Second, the problem must have the
property that if a polynomial-time algorithm exists to solve it, then such an algorithm
also exists for every other problem in PSPACE. Because of this definition, either all
problems in PSPACE have polynomial-time solutions, or no PSPACE-complete prob-
lem has a polynomial-time solution. The general consensus is that the latter is the
more plausible possibility.

Capabilities were introduced by Dennis and Van Horn [44] in the limited context
of C-lists, where they remain in today’s mainstream systems. The greater power of
addressable capabilities was explored by Fabry [51] and Linden [89]. Variants of these
ideas were incorporated into various research systems, of which Hydra [137, 32] and
CAP [96] are well known. The most direct influence of the ideas, however, seems to be
on the design of IBM’s commercial System/38 and AS/400 systems, for which citations
were given previously.

The JVM verifier is specified by Lindholm and Yellin [90]. The VMware ESX Server
VMM is described in an article by Waldspurger [131], which does a wonderful job of
showing how operating system concepts are applied to a practical design problem.

A good overview of current directions in VMM technology appeared in May of
2005 as a special issue of Computer magazine [52].

I said that z/VM is a VMM that simulates zSeries machines. Strictly speaking,
the VMM is just one component of z/VM, the one called CP, which is short for

hailperin-163001 book October 18, 2005 11:18

268 ! Chapter 7 Processes and Protection

Control Program. Also, the simulated architecture is technically called z/Architecture;
the zSeries consists of particular hardware implementations of that architecture, anal-
ogous to the Pentium family being implementations of IA-32.

IBM’s z/VM has evolved from its roots in the 1960s. In particular, the early version
of CP-67 described by Meyer and Seawright [95] made use of paging for its own opera-
tion but did not allow paging within the virtual machines. Two years later, Parmelee et
al. [99] describe a version of CP-67 that did provide paging within the virtual machines.
The evolution of CP-67 into VM/370 is described by Seawright and MacKinnon [114]
and by Creasy [36]. VM/370 itself evolved into today’s z/VM, by way of VM/XA and
VM/ESA.

One of the most devious forms of Trojan horse was explained by Thompson in the
lecture he gave upon receiving the Turing Award [129].

