Operating Systems and Middleware: Supporting Controlled Interaction
by Max Hailperin

The commercially published version of this work (ISBN 0-534-42369-8) was Copyright © 2007 by Thomson Course
Technology, a division of Thomson Learning, Inc., pursuant to an assignment of rights from the author.

This free re-release is Copyright © 2005-2010 by Max Hailperin, pursuant to an assignment of the rights back to him by
Course Technology, a division of Cengage Learning, Inc., successor-in-interest to the publisher. Rights to illustrations
rendered by the publisher were also assigned by Course Technology to Max Hailperin and those illustrations are included in
the license he grants for this free re-release.

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 United States License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street,
Suite 300, San Francisco, California, 94105, USA.

The free re-release was prepared from final page proofs and should be completely identical to the commercially published
version. In particular, all the errata listed on the web site still apply. (The author intends to release subsequent versions that
incorporate the corrections as well as updates and improvements. Subsequent versions may also be in a more easily
modifiable form to encourage participation by other contributors. Please email suggestions to max@gustavus.edu.)

Credits from the commercially published version:
Senior Product Manager: Alyssa Pratt
Managing Editor: Mary Franz
Development Editor: Jill Batistick
Senior Marketing Manager: Karen Seitz
Associate Product Manager: Jennifer Smith
Editorial Assistant: Allison Murphy
Senior Manufacturing Coordinator: Justin Palmeiro
Cover Designer: Deborah VanRooyen
Compositor: Interactive Composition Corporation

hailperin-163001

book October 18, 2005 10:28

CHAPTER

3

Scheduling

3.1 Introduction

In Chapter 2, you saw that operating systems support the concurrent execution of
multiple threads by repeatedly switching each processor’s attention from one thread
to another. This switching implies that some mechanism, known as a scheduler, is
needed to choose which thread to run at each time. Other system resources may need
scheduling as well; for example, if several threads read from the same disk drive, a
disk scheduler may place them in order. For simplicity, I will consider only processor
scheduling. Normally, when people speak of scheduling, they mean processor schedul-
ing; similarly, the scheduler is understood to mean the processor scheduler.

A scheduler should make decisions in a way that keeps the computer system'’s users
happy. For example, picking the same thread all the time and completely ignoring the
others would generally not be a good scheduling policy. Unfortunately, there is no one
policy that will make all users happy all the time. Sometimes the reason is as simple as
different users having conflicting desires: for example, user A wants task A completed
quickly, while user B wants task B completed quickly. Other times, though, the relative
merits of different scheduling policies will depend not on whom you ask, but rather
on the context in which you ask. As a simple example, a student enrolled in several

4 39 »

hailperin-163001 book October 18, 2005 10:28

40 » Chapter 3 Scheduling

courses is unlikely to decide which assignment to work on without considering when
the assignments are due.

Because scheduling policies need to respond to context, operating systems provide
scheduling mechanisms that leave the user in charge of more subtle policy choices.
For example, an operating system may provide a mechanism for running whichever
thread has the highest numerical priority, while leaving the user the job of assigning
priorities to the threads. Even so, no one mechanism (or general family of policies)
will suit all goals. Therefore, I spend much of this chapter describing the different
goals that users have for schedulers and the mechanisms that can be used to achieve
those goals, at least approximately. Particularly since users may wish to achieve several
conflicting goals, they will generally have to be satisfied with “good enough.”

Before I get into the heavily values-laden scheduling issues, though, I will present
one goal everyone can agree upon: a thread that can make productive use of a proc-
essor should always be preferred over one that is waiting for something, such as the
completion of a time delay or the arrival of input. In Section 3.2, you will see how
schedulers arrange for this by keeping track of each thread’s state and scheduling only
those threads that can run usefully.

Following the section on thread states, I devote Section 3.3 entirely to the question
of users’ goals, independent of how they are realized. Then I spend one section apiece
on three broad families of schedulers, examining for each not only how it works but
also how it can serve users’ goals. These three families of schedulers are those based
on fixed thread priorities (Section 3.4), those based on dynamically adjusted thread
priorities (Section 3.5), and those based less on priorities than on controlling each
thread’s proportional share of processing time (Section 3.6). This three-way division is
not the only possible taxonomy of schedulers, but it will serve to help me introduce
several operating systems’ schedulers and explain the principles behind them while
keeping in mind the context of users’ goals. After presenting the three families of
schedulers, I will briefly remark in Section 3.7 on the role scheduling plays in system
security. The chapter concludes with exercises, programming and exploration projects,
and notes.

3.2 Thread States

A typical thread will have times when it is waiting for some event, unable to exe-
cute any useful instructions until the event occurs. Consider a web server that reads a
client’s request from the network, reads the requested web page from disk, and then
sends the page over the network to the client. Initially the server thread is waiting for
the network interface to have some data available. If the server thread were scheduled
on a processor while it was waiting, the best it could do would be to execute a loop that

hailperin-163001

book October 18, 2005 10:28

3.2 Thread States <« 41

checked over and over whether any data has arrived—hardly a productive use of the
processor’s time. Once data is available from the network, the server thread can exe-
cute some useful instructions to read the bytes in and check whether the request is
complete. If not, the server needs to go back to waiting for more data to arrive. Once
the request is complete, the server will know what page to load from disk and can issue
the appropriate request to the disk drive. At that point, the thread once again needs
to wait until such time as the disk has completed the requisite physical movements to
locate the page. To take a different example, a video display program may display one
frame of video and then wait some fraction of a second before displaying the next so
that the movie doesn’t play too fast. All the thread could do between frames would
be to keep checking the computer’s real-time clock to see whether enough time had
elapsed—again, not a productive use of the processor.

In a single-thread system, it is plausible to wait by executing a loop that continu-
ally checks for the event in question. This approach is known as busy waiting. However,
a modern general-purpose operating system will have multiple threads competing for
the processor. In this case, busy waiting is a bad idea because any time that the sched-
uler allocates to the busy-waiting thread is lost to the other threads without achieving
any added value for the thread that is waiting.

Therefore, operating systems provide an alternative way for threads to wait. The
operating system keeps track of which threads can usefully run and which are wait-
ing. The system does this by storing runnable threads in a data structure called the
run queue and waiting threads in wait queues, one per reason for waiting. Although
these structures are conventionally called queues, they may not be used in the first-in,
first-out style of true queues. For example, there may be a list of threads waiting for
time to elapse, kept in order of the desired time. Another example of a wait queue
would be a set of threads waiting for the availability of data on a particular network
communication channel.

Rather than executing a busy-waiting loop, a thread that wants to wait for some
event notifies the operating system of this intention. The operating system removes
the thread from the run queue and inserts the thread into the appropriate wait queue,
as shown in Figure 3.1. Because the scheduler considers only threads in the run queue
for execution, it will never select the waiting thread to run. The scheduler will be
choosing only from those threads that can make progress if given a processor on which
to run.

In Chapter 2, I mentioned that the arrival of a hardware interrupt can cause the
processor to temporarily stop executing instructions from the current thread and to
start executing instructions from the operating system’s interrupt handler. One of
the services this interrupt handler can perform is determining that a waiting thread
doesn’t need to wait any longer. For example, the computer’s real-time clock may be

hailperin-163001 book October 18, 2005 10:28

42 » Chapter 3 Scheduling

Run queue Wait queue

Originally running thread,
needs to wait

Run queue Wait queue
Newly selected Newly waiting
to run

Figure 3.1 When a thread needs to wait, the operating system moves it from the run queue to a
wait queue. The scheduler selects one of the threads remaining in the run queue to dispatch, so it
starts running.

configured to interrupt the processor every one-hundredth of a second. The interrupt
handler could check the first thread in the wait queue of threads that are waiting for
specific times to elapse. If the time this thread was waiting for has not yet arrived, no
further threads need to be checked because the threads are kept in time order. If, on
the other hand, the thread has slept as long as it requested, then the operating system
can move it out of the list of sleeping threads and into the run queue, where the thread
is available for scheduling. In this case, the operating system should check the next
thread similarly, as illustrated in Figure 3.2.

Putting together the preceding information, there are at least three distinct states
a thread can be in:

e Runnable (but not running), awaiting dispatch by the scheduler
e Running on a processor
e Waiting for some event
Some operating systems may add a few more states in order to make finer distinctions

(waiting for one kind of event versus waiting for another kind) or to handle special cir-
cumstances (for example, a thread that has finished running, but that needs to be kept

hailperin-163001 book October 18, 2005 10:28

3.2 Thread States <« 43

Run queue Wait queue

12:05 12:15 12:30 12:45

RN

Past, Present, Future, Don'’t
move move leave even
check

Figure 3.2 When the operating system handles a timer interrupt, all threads waiting for times that
have now past are moved to the run queue. Because the wait queue is kept in time order, the scheduler
need only check threads until it finds one waiting for a time still in the future. In this figure, times are
shown on a human scale for ease of understanding.

Initiation
yield or preemption
dispatch
Runnable Running
N V
Waiting Termination

Figure 3.3 Threads change states as shown here. When a thread is initially created, it is runnable,
but is not actually running on a processor until dispatched by the scheduler. A running thread can
voluntarily yield the processor or can be preempted by the scheduler in order to run another thread. In
either case, the formerly running thread returns to the runnable state. Alternatively, a running thread
may wait for an external event before becoming runnable again. A running thread may also terminate.

around until another thread is notified). For simplicity, I will stick to the three basic
states in the foregoing list. At critical moments in the thread’s lifetime, the operat-
ing system will change the thread’s state. These thread state changes are indicated in
Figure 3.3. Again, a real operating system may add a few additional transitions; for
example, it may be possible to forcibly terminate a thread, even while it is in a waiting
state, rather than having it terminate only of its own accord while running.

hailperin-163001 book October 18, 2005 10:28

44 p Chapter 3 Scheduling

3.3 Scheduling Goals

Users expect a scheduler to maximize the computer system’s performance and to allow
them to exert control. Each of these goals can be refined into several more precise
goals, which I explain in the following subsections. High performance may mean high
throughput (Section 3.3.1) or fast response time (Section 3.3.2), and user control may
be expressed in terms of urgency, importance, or resource allocation (Section 3.3.3).

3.3.1 Throughput

Many personal computers have far more processing capability available than work
to do, and they largely sit idle, patiently waiting for the next keystroke from a user.
However, if you look behind the scenes at a large Internet service, such as Google,
you'll see a very different situation. Large rooms filled with rack after rack of com-
puters are necessary in order to keep up with the pace of incoming requests; any one
computer can cope only with a small fraction of the traffic. For economic reasons,
the service provider wants to keep the cluster of servers as small as possible. Therefore,
the throughput of each server must be as high as possible. The throughput is the rate at
which useful work, such as search transactions, is accomplished. An example measure
of throughput would be the number of search transactions completed per second.

Maximizing throughput certainly implies that the scheduler should give each proc-
essor a runnable thread on which to work, if at all possible. However, there are some
other, slightly less obvious, implications as well. Remember that a computer system
has more components than just processors. It also has I/O devices (such as disk drives
and network interfaces) and a memory hierarchy, including cache memories. Only by
using all these resources efficiently can a scheduler maximize throughput.

I already mentioned I/O devices in Chapter 2, with the example of a computation-
ally intensive graphics rendering program running concurrently with a disk-intensive
virus scanner. I will return to this example later in the current chapter to see one way
in which the two threads can be efficiently interleaved. In a nutshell, the goal is to
keep both the processor and the disk drive busy all the time. If you have ever had an
assistant for a project, you may have some appreciation for what this entails: whenever
your assistant was in danger of falling idle, you had to set your own work aside long
enough to explain the next assignment. Similarly, the processor must switch threads
when necessary to give the disk more work to do.

Cache memories impact throughput-oriented scheduling in two ways, though
one arises only in multiprocessor systems. In any system, switching between differ-
ent threads more often than necessary will reduce throughput because processor time
will be wasted on the overhead of context switching, rather than be available for useful

hailperin-163001

book October 18, 2005 10:28

3.3 Scheduling Goals <« 45

work. The main source of this context-switching overhead is not the direct cost of the
switch itself, which entails saving a few registers out and loading them with the other
thread’s values. Instead, the big cost is in reduced cache memory performance, for
reasons I will explain in a moment. On multiprocessor systems, a second issue arises:
a thread is likely to run faster when scheduled on the same processor as it last ran on.
Again, this results from cache memory effects. To maximize throughput, schedulers
therefore try to maintain a specific processor affinity for each thread, that is, to consis-
tently schedule the thread on the same processor unless there are other countervailing
considerations.

You probably learned in a computer organization course that cache memories pro-
vide fast storage for those addresses that have been recently accessed or that are near
to recently accessed locations. Because programs frequently access the same locations
again (that is, exhibit temporal locality) or access nearby locations (that is, exhibit spatial
locality), the processor will often be able to get its data from the cache rather than from
the slower main memory. Now suppose the processor switches threads. The new thread
will have its own favorite memory locations, which are likely to be quite different. The
cache memory will initially suffer many misses, slowing the processor to the speed
of the main memory, as shown in Figure 3.4. Over time, however, the new thread’s
data will displace the data from the old thread, and the perfomance will improve.
Suppose that just at the point where the cache has adapted to the second thread, the

Main
Processor Cache Memory
>-a a
Thread
A b
>-a a
>-a a
a a
Thread —b
B a a
a a

Figure 3.4 When a processor has been executing thread A for a while, the cache will mostly hold
thread A’s values, and the cache hit rate may be high. If the processor then switches to thread B,
most memory accesses will miss in the cache and go to the slower main memory.

hailperin-163001 book October 18, 2005 10:28

46 P Chapter 3 Scheduling

scheduler were to decide to switch back. Clearly this is not a recipe for high-throughput
computing.

On a multiprocessor system, processor affinity improves throughput in a similar
manner by reducing the number of cycles the processor stalls waiting for data from
slower parts of the memory hierarchy. Each processor has its own local cache mem-
ory. If a thread resumes running on the same processor on which it previously ran,
there is some hope it will find its data still in the cache. At worst, the thread will incur
cache misses and need to fetch the data from main memory. The phrase “at worst”
may seem odd in the context of needing to go all the way to main memory, but in a
multiprocessor system, fetching from main memory is not the highest cost situation.

Memory accesses are even more expensive if they refer to data held in another
processor’s cache. That situation can easily arise if the thread is dispatched on a differ-
ent processor than it previously ran on, as shown in Figure 3.5. In this circumstance,
the multiprocessor system’s cache coherence protocol comes into play. Typically, this
means first transferring the data from the old cache to the main memory and then
transferring it from the main memory to the new cache. This excess coherence traffic
(beyond what is needed for blocks shared by multiple threads) reduces throughput if
the scheduler has not arranged for processor atfinity.

Main
Processor 1 Cache 1 memory Cache 2 Processor 2
—>a a b b€g——

Thread A b Thread
A B
—_—>a a b b<d——m

b b
a a
Thread b Thread
B a A
a a
b b

Figure 3.5 If processor 1 executes thread A and processor 2 executes thread B, after a while each
cache will hold the corresponding thread’s values. If the scheduler later schedules each thread on the
opposite processor, most memory accesses will miss in the local cache and need to use the cache
coherence protocol to retrieve data from the other cache.

hailperin-163001

book October 18, 2005 10:28

3.3 Scheduling Goals <« 47

3.3.2 Response Time

Other than throughput, the principle measure of a computer system’s performance
is response time: the elapsed time from a triggering event (such as a keystroke or a
network packet’s arrival) to the completed response (such as an updated display or the
transmission of a reply packet). Notice that a high-performance system in one sense
may be low-performance in the other. For example, frequent context switches, which
are bad for throughput, may be necessary to optimize response time. Systems intended
for direct interaction with a single user tend to be optimized for response time, even at
the expense of throughput, whereas centralized servers are usually designed for high
throughput as long as the response time is kept tolerable.

If an operating system is trying to schedule more than one runnable thread per
processor and if each thread is necessary in order to respond to some event, then
response time inevitably involves tradeoffs. Responding more quickly to one event
by running the corresponding thread means responding more slowly to some other
event by leaving its thread in the runnable state, awaiting later dispatch. One way to
resolve this trade-off is by using user-specified information on the relative urgency or
importance of the threads, as I describe in Section 3.3.3. However, even without that
information, the operating system may be able to do better than just shrug its virtual
shoulders.

Consider a real-world situation. You get an email from a long-lost friend, reporting
what has transpired in her life and asking for a corresponding update on what you
have been doing for the last several years. You have barely started writing what will
inevitably be a long reply when a second email message arrives, from a close friend,
asking whether you want to go out tonight. You have two choices. One is to finish
writing the long letter and then reply “sure” to the second email. The other choice
is to temporarily put your long letter aside, send off the one-word reply regarding
tonight, and then go back to telling the story of your life. Either choice extends your
response time for one email in order to keep your response time for the other email
as short as possible. However, that symmetry doesn’t mean there is no logical basis
for choice. Prioritizing the one-word reply provides much more benefit to its response
time than it inflicts harm on the other, more time-consuming task.

If an operating system knows how much processor time each thread will need in
order to respond, it can use the same logic as in the email example to guide its choices.
The policy of Shortest Job First (SJF) scheduling minimizes the average response time, as
you can demonstrate in Exercise 3.5. This policy dates back to batch processing systems,
which processed a single large job of work at a time, such as a company’s payroll or
accounts payable. System operators could minimize the average turnaround time from
when a job was submitted until it was completed by processing the shortest one first.

hailperin-163001 book October 18, 2005 10:28

48 P» Chapter 3 Scheduling

The operators usually had a pretty good idea how long each job would take, because
the same jobs were run on a regular basis. However, the reason why you should be
interested in SJF is not for scheduling batch jobs (which you are unlikely to encounter),
but as background for understanding how a modern operating system can improve the
responsiveness of threads.

Normally, an operating system won’t know how much processor time each thread
will need in order to respond. One solution is to guess, based on past behavior. The
system can prioritize those threads that have not consumed large bursts of processor
time in the past, where a burst is the amount of processing done between waits for
external events. Another solution is for the operating system to hedge its bets, so that
even if it doesn’t know which thread needs to run only briefly, it won’t sink too much
time into the wrong thread. By switching frequently between the runnable threads,
if any one of them needs only a little processing time, it will get that time relatively
soon even if the other threads involve long computations.

The successfulness of this hedge depends not only on the duration of the time
slices given to the threads, but also on the number of runnable threads competing
for the processor. On a lightly loaded system, frequent switches may suffice to ensure
responsiveness. By contrast, consider a system that is heavily loaded with many long-
running computations, but that also occasionally has an interactive thread that needs
just a little processor time. The operating system can ensure responsiveness only by
identifying and prioritizing the interactive thread, so that it doesn’t have to wait in
line behind all the other threads’ time slices. However brief each of those time slices
is, if there are many of them, they will add up to a substantial delay.

3.3.3 Urgency, Importance, and Resource Allocation

The goals of high throughput and quick response time do not inherently involve user
control over the scheduler; a sufficiently smart scheduler might make all the right
decisions on its own. On the other hand, there are user goals that revolve precisely
around the desire to be able to say the following: “This thread is a high priority; work
on it.” I will explain three different notions that often get confusingly lumped under
the heading of priority. To disentangle the confusion, I will use different names for
each of them: urgency, importance, and resource allocation. I will reserve the word priority
for my later descriptions of specific scheduling mechanisms, where it may be used
to help achieve any scheduling goal: throughput, responsiveness, or the control of
urgency, importance, or resource allocation.

A task is urgent if it needs to be done soon. For example, if you have a small
homework assignment due tomorrow and a massive term paper to write within the

hailperin-163001

book October 18, 2005 10:28

3.3 Scheduling Goals <« 49

next two days, the homework is more urgent. That doesn’t necessarily mean it would
be smart for you to prioritize the homework; you might make a decision to take a zero
on the homework in order to free up more time for the term paper. If so, you are basing
your decision not only on the two tasks’ urgency, but also on their importance; the
term paper is more important. In other words, importance indicates how much is at
stake in accomplishing a task in a timely fashion.

Importance alone is not enough to make good scheduling decisions either. Sup-
pose the term paper wasn’t due until a week from now. In that case, you might decide
to work on the homework today, knowing that you would have time to write the
paper starting tomorrow. Or, to take a third example, suppose the term paper (which
you have yet to even start researching) was due in an hour, with absolutely no late
papers accepted. In that case, you might realize it was hopeless to even start the term
paper, and so decide to put your time into the homework instead.

Although urgency and importance are quite different matters, the precision with
which a user specifies urgency will determine how that user can control scheduling
to reflect importance. If tasks have hard deadlines, then importance can be dealt with
as in the homework example—through a process of ruthless triage. Here, importance
measures the cost of dropping a task entirely. On the other hand, the deadlines may
be “soft,” with the importance measuring how bad it is for each task to be late. At the
other extreme, the user might provide no information at all about urgency, instead
demanding all results “as soon as possible.” In this case, a high importance task might
be one to work on whenever possible, and a low importance task might be one to fill
in the idle moments, when there is nothing more important to do.

Other than urgency and importance, another way in which users may wish to
express the relationship between different threads is by controlling what fraction of
the available processing resources they are allocated. Sometimes, this is a matter of
fairness. For example, if two users are sharing a computer, it might be fair to devote
half of the processing time to one user’s threads and the other half of the processing
time to the other user’s threads. In other situtations, a specific degree of inequity may
be desired. For example, a web hosting company may sell shares of a large server to
small companies for their web sites. A company that wants to provide good service to
a growing customer base might choose to buy two shares of the web server, expecting
to get twice as much of the server’s processing time in return for a larger monthly fee.

When it was common for thousands of users, such as university students, to share a
single computer, considerable attention was devoted to so-called fair-share scheduling,
in which users’ consumption of the shared processor’s time was balanced out over
relatively long time periods, such as a week. That is, a user who did a lot of computing
early in the week might find his threads allocated only a very small portion of the
processor’s time later in the week, so that the other users would have a chance to

hailperin-163001 book October 18, 2005 10:28

50 P Chapter 3 Scheduling

catch up. A fair share didn’t have to mean an equal share; the system administrator
could grant differing allocations to different users. For example, students taking an
advanced course might receive more computing time than introductory students.

With the advent of personal computers, fair-share scheduling has fallen out of
favor, but another resource-allocation approach, proportional-share scheduling, is still
very much alive. (For example, you will see that the Linux scheduler is largely based
on the proportional-share scheduling idea.) The main reason why I mention fair-share
scheduling is to distinguish it from proportional-share scheduling, because the two
concepts have names that are so confusingly close.

Proportional-share scheduling balances the processing time given to threads over
a much shorter time scale, such as a second. The idea is to focus only on those threads
that are runnable and to allocate processor time to them in proportion with the shares
the user has specified. For example, suppose that I have a big server on which three
companies have purchased time. Company A pays more per month than companies B
and C, so I have given two shares to company A and only one share each to companies
B and C. Suppose, for simplicity, that each company runs just one thread, which I
will call thread A, B, or C, correspondingly. If thread A waits an hour for some input
to arrive over the network while threads B and C are runnable, I will give half the
processing time to each of B and C, because they each have one share. When thread
A’s input finally arrives and the thread becomes runnable, it won't be given an hour-
long block of processing time to “catch up” with the other two threads. Instead, it will
get half the processor’s time, and threads B and C will each get one-quarter, reflecting
the 2:1:1 ratio of their shares.

The simplest sort of proportional-share scheduling (such as Linux supports) allows
shares to be specified only for individual threads, such as threads A, B, and C in the pre-
ceding example. A more sophisticated version allows shares to be specified collectively
for all the threads run by a particular user or otherwise belonging to a logical group.
For example, each user might get an equal share of the processor’s time, independent
of how many runnable threads the user has. Users who run multiple threads simply
subdivide their shares of the processing time. Similarly, in the example where a big
server is contracted out to multiple companies, I would probably want to allow each
company to run multiple threads while still controlling the overall resource allocation
among the companies, not just among the individual threads.

Having learned about urgency, importance, and resource allocation, one impor-
tant lesson is that without further clarification, you cannot understand what a user
means by a sentence such as “thread A is higher priority than thread B.” The user may
want you to devote twice as much processing time to A as to B, because A has higher
priority in the sense of meriting a larger proportion of resources. Then again, the user
may want you to devote almost all processing time to A, running B only in the spare

hailperin-163001

book October 18, 2005 10:28

3.3 Scheduling Goals <« 51

moments when A goes into a waiting state, because A is higher priority in the sense
of greater importance, greater urgency, or both.

Unfortunately, many operating systems have traditionally not given the user a rich
enough vocabulary to directly express more than one of these goals. For example, the
UNIX family of operating systems (including Mac OS X and Linux) provides a way
for the user to specify the niceness of a thread. The word nice should be understood
in the sense that a very nice thread is one that is prone to saying, “Oh no, that’s all
right, you go ahead of me, I can wait.” In other words, a high niceness is akin to a low
priority. However, different members of this operating system family interpret this
single parameter, niceness, differently.

The original tradition, to which Mac OS X still adheres, is that niceness is an expres-
sion of importance; a very nice thread should normally only run when there is spare
processor time. Some newer UNIX-family schedulers, as in Linux, instead interpret the
same niceness number as an expression of resource allocation proportion, with nicer
threads getting proportionately less processor time. It is pointless arguing which of
these interpretations of niceness is the right one; the problem is that users have two
different things they may want to tell the scheduler, and they will never be able to do
so with only one control knob.

Luckily, some operating systems have provided somewhat more expressive vocab-
ularies for user control. For example, Mac OS X allows the user to either express the
urgency of a thread (through a deadline and related information) or its importance
(through a niceness). These different classes of threads are placed in a hierarchical rela-
tionship; the assumption is that all threads with explicit urgency information are more
important than any of the others. Similarly, some proportional-share schedulers, akin
to Linux’s, use niceness for proportion control, but also allow threads to be explicitly
flagged as low-importance threads to be run only during otherwise idle time.

As a summary of this section, Figure 3.6 shows a taxonomy of the scheduling
goals I have described. Figure 3.7 previews the scheduling mechanisms I describe in

Scheduling goals

/

Performance Control

N N

Throughput Response Urgency Importance Resource
time allocation

Figure 3.6 A user may want the scheduler to improve system performance or to allow user control.
Two different performance goals are high throughput and fast response time. Three different ways in
which a user may exert control are by specifying threads’ urgency, importance, or resource share.

hailperin-163001 book October 18, 2005 10:28

52 P Chapter 3 Scheduling

Scheduling mechanisms

/

Priority Proportional share

/ \ (Section 3.6)

Fixed priority Dynamic priority

(Section 3.4) / \

Earliest Deadline Decay usage
First (Section 3.5.1) (Section 3.5.2)

Figure 3.7 A scheduling mechanism may be based on always running the highest priority thread,
or on pacing the threads to each receive a proportional share of processor time. Priorities may be
fixed, or they may be adjusted to reflect either the deadline by which a thread must finish or the
thread’s amount of processor usage.

Mechanism Goals
fixed priority urgency, importance
Earliest Deadline First urgency
decay usage importance, throughput, response time
proportional share resource allocation

Figure 3.8 For each scheduling mechanism | present, | explain how it can satisfy one or more of
the scheduling goals.

the next three sections, and Figure 3.8 shows which goals each of them is designed to
satisfy.

3.4 Fixed-Priority Scheduling

Many schedulers use a numerical priority for each thread; this controls which threads
are selected for execution. The threads with higher priority are selected in preference
to those with lower priority. No thread will ever be running if another thread with
higher priority is not running, but is in the runnable state. The simplest way the pri-
orities can be assigned is for the user to manually specify the priority of each thread,
generally with some default value if none is explicitly specified. Although there may
be some way for the user to manually change a thread’s priority, one speaks of fixed-
priority scheduling as long as the operating system never automatically adjusts a thread’s
priority.

hailperin-163001

book October 18, 2005 10:28

3.4 Fixed-Priority Scheduling <« 53

Fixed-priority scheduling suffices to achieve user goals only under limited circum-
stances. However, it is simple, so many real systems offer it, at least as one option. For
example, both Linux and Microsoft Windows allow fixed-priority scheduling to be
selected for specific threads. Those threads take precedence over any others, which are
scheduled using other means I discuss in Sections 3.5.2 and 3.6. In fact, fixed-priority
scheduling is included as a part of the international standard known as POSIX, which
many operating systems attempt to follow.

As an aside about priorities, whether fixed or otherwise, it is important to note
that some real systems use smaller priority numbers to indicate more prefered threads
and larger priority numbers to indicate those that are less prefered. Thus, a “higher
priority” thread may actually be indicated by a lower priority number. In this book,
I will consistently use “higher priority” and “lower priority” to mean more and less
preferred, independent of how those are encoded as numbers by a particular
system.

In a fixed-priority scheduler, the run queue can be kept in a data structure ordered
by priority. If you have studied algorithms and data structures, you know that in theory
this could be efficiently done using a clever representation of a priority queue, such
as a binary heap. However, in practice, most operating systems use a much simpler
structure, because they use only a small range of integers for the priorities. Thus, it
suffices to keep an array with one entry per possible priority. The first entry contains
a list of threads with the highest priority, the second entry contains a list of threads
with the next highest priority, and so forth.

Whenever a processor becomes idle because a thread has terminated or entered a
waiting state, the scheduler dispatches a runnable thread of highest available priority.
The scheduler also compares priorities when a thread becomes runnable because it is
newly initiated or because it is done waiting. If the newly runnable thread has higher
priority than a running thread, the scheduler preempts the running thread of lower
priority; that is, the lower-priority thread ceases to run and returns to the run queue.
In its place, the scheduler dispatches the newly runnable thread of higher priority.

Two possible strategies exist for dealing with ties, in which two or more runnable
threads have equally high priority. (Assume there is only one processor on which to
run them, and that no thread has higher priority than they do.) One possibility is
to run the thread that became runnable first until it waits for some event or chooses
to voluntarily yield the processor. Only then is the second, equally high-priority thread
dispatched. The other possibility is to share the processor’s attention between those
threads that are tied for highest priority by alternating among them in a round-robin
fashion. That is, each thread runs for some small interval of time (typically tens or
hundreds of milliseconds), and then it is preempted from the clock interrupt handler
and the next thread of equal priority is dispatched, cycling eventually back to the first

hailperin-163001 book October 18, 2005 10:28

54 P Chapter 3 Scheduling

of the threads. The POSIX standard provides for both of these options; the user can
select either a first-in, first-out (FIFO) policy or a round-robin (RR) policy.

Fixed-priority scheduling is not viable in an open, general-purpose environment
where a user might accidentally or otherwise create a high-priority thread that runs
for a long time. However, in an environment where all the threads are part of a care-
fully quality-controlled system design, fixed-priority scheduling may be a reasonable
choice. In particular, it is frequently used for so-called hard-real-time systems, such as
those that control the flaps on an airplane’s wings.

Threads in these hard-real-time systems normally perform periodic tasks. For exam-
ple, one thread may wake up every second to make a particular adjustment in the flaps
and then go back to sleep for the remainder of the second. Each of these tasks has a
deadline by which it must complete; if the deadline is missed, the program has failed
to meet its specification. (That is what is meant by “hard real time.”) In the simplest
case, the deadline is the same as the period; for example, each second’s adjustment
must be done before the second is up. The designers of a system like this know all the
threads that will be running and carefully analyze the ensemble to make sure no dead-
lines will ever be missed. In order to do this, the designers need to have a worst-case
estimate of how long each thread will run, per period.

I can illustrate the analysis of a fixed-priority schedule for a hard-real-time sys-
tem with some simple examples, which assume that the threads are all periodic, with
deadlines equal to their periods, and with no interactions among them other than the
competition for a single processor. To see how the same general ideas can be extended
to cases where these assumptions don’t hold, you could read a book devoted specifi-
cally to real-time systems.

Two key theorems, proved by Liu and Layland in a 1973 article, make it easy to
analyze such a periodic hard-real-time system under fixed-priority scheduling:

e If the threads will meet their deadlines under any fixed priority assignment, then
they will do so under a rate-monotonic assignment. That is, the more rapid a thread’s
period, the higher its priority should be.

e To check that deadlines are met, it suffices to consider the worst-case situation,
which is that all the threads’ periods start at the same moment.

Therefore, to test whether any fixed-priority schedule is feasible, assign priorities in
the rate-monotonic fashion. Assume all the threads are newly runnable at time 0 and
plot out what happens after that, seeing whether any deadline is missed.

To test the feasibilty of a real-time schedule, it is conventional to use a Gantt chart.
This can be used to see whether a rate-monotonic fixed-priority schedule will work
for a given set of threads. If not, some scheduling approach other than fixed priorities

hailperin-163001

book October 18, 2005 10:28

3.4 Fixed-Priority Scheduling <« 55

may work, or it may be necessary to redesign using less demanding threads or hardware
with more processing power.

A Gantt chart is a bar, representing the passage of time, divided into regions labeled
to show what thread is running during the corresponding time interval. For example,
the Gantt chart

T1 T2 T1
0 5 15 20

shows thread T1 as running from time O to time 5 and again from time 15 to time 20;
thread T2 runs from time 5 to time 15.

Consider an example with two periodically executing threads. One, T1, has a
period and deadline of four seconds and a worst-case execution time per period of
two seconds. The other, T2, has a period and deadline of six seconds and a worst-case
execution time per period of three seconds. On the surface, this looks like it might just
barely be feasible on a single processor: T1 has an average demand of half a processor
(two seconds per four) and T2 also has an average demand of half a processor (three sec-
onds per six), totalling to one fully utilized, but not oversubscribed, processor. Assume
that all overheads, such as the time to do context switching between the threads, have
been accounted for by including them in the threads’ worst-case execution times.

However, to see whether this will really work without any missed deadlines, I need
to draw a Gantt chart to determine whether the threads can get the processor when
they need it. Because T1 has the shorter period, I assign it the higher priority. By Liu
and Layland’s other theorem, I assume both T1 and T2 are ready to start a period at
time 0. The first six seconds of the resulting Gantt chart looks like this:

T | T2 | T1
0 2 4 6

Note that T1 runs initially, when both threads are runnable, because it has the higher
priority. Thus, it has no difficulty making its deadline. When T1 goes into a waiting
state at time 2, T2 is able to start running. Unfortunately, it can get only two seconds of
running done by the time T1 becomes runnable again, at the start of its second period,
which is time 4. At that moment, T2 is preempted by the higher-priority thread T1,
which occupies the processor until time 6. Thus, T2 misses its deadline: by time 6, it
has run for only two seconds, rather than three.

If you accept Liu and Layland’s theorem, you will know that switching to the other
fixed-priority assignment (with T2 higher priority than T1) won't solve this problem.
However, rather than taking this theorem at face value, you can draw the Gantt chart

hailperin-163001 book October 18, 2005 10:28

56 P Chapter 3 Scheduling

for this alternative priority assignment in Exercise 3.3 and see that again one of the
threads misses its deadline.

In Section 3.5, I will present a scheduling mechanism that can handle the preced-
ing scenario successfully. First, though, I will show one more example—this time one
for which fixed-priority scheduling suffices. Suppose T2’s worst-case execution time
were only two seconds per six second period, with all other details the same as before.
In this case, a Gantt chart for the first twelve seconds would look as follows:

T1 | T2 | T1 | T2 | T1 | idle
0 2 4 6 8 10 12

Notice that T1 has managed to execute for two seconds during each of its three periods
(0-4, 4-8, and 8-12), and that T2 has managed to execute for two seconds during
each of its two periods (0-6 and 6-12). Thus, neither missed any deadlines. Also, you
should be able to convince yourself that you don’t need to look any further down
the timeline, because the pattern of the first 12 seconds will repeat itself during each
subsequent 12 seconds.

3.5 Dynamic-Priority Scheduling

Priority-based scheduling can be made more flexible by allowing the operating sys-
tem to automatically adjust threads’ priorities to reflect changing circumstances. The
relevant circumstances, and the appropriate adjustments to make, depend on what
user goals the system is trying to achieve. In this section, I will present a couple of
different variations on the theme of dynamically adjusted priorites. First, for continu-
ity with Section 3.4, Section 3.5.1 shows how priorities can be dynamically adjusted
for periodic hard-real-time threads using a technique known as Earliest Deadline First
scheduling. Then Section 3.5.2 explains decay usage scheduling, a dynamic adjust-
ment policy commonly used in general-purpose computing environments.

3.5.1 Earliest Deadline First Scheduling

You saw in Section 3.4 that rate-monotonic scheduling is the optimal fixed-priority
scheduling method, but that even it couldn’t schedule two threads, one of which
needed two seconds every four and the other of which needed three seconds every six.
That goal is achievable with an optimal method for dynamically assigning priorities
to threads. This method is known as Earliest Deadline First (EDF). In EDF scheduling,

hailperin-163001

book October 18, 2005 10:28

3.5 Dynamic-Priority Scheduling <« 57

each time a thread becomes runnable you re-assign priorities according to the follow-
ing rule: the sooner a thread’s next deadline, the higher its priority. The optimality of
EDF is another of Liu and Layland’s theorems.

Consider again the example with T1 needing two seconds per four and T2 need-
ing three seconds per six. Using EDF scheduling, the Gantt chart for the first twelve
seconds of execution would be as follows:

T1 T2 T1 T2 T1
0 2 5 7 10 12

There is no need to continue the Gantt chart any further because it will start repeating.
Notice that neither thread misses any deadlines: T1 receives two seconds of processor
time in each period (0-4, 4-8, and 8-12), while T2 receives three seconds of processing
in each of its periods (0-6 and 6-12). This works better than rate-monotonic schedul-
ing because the threads are prioritized differently at different times. At time O, T1 is
prioritized over T2 because its deadline is sooner (time 4 versus 6). However, when T1
becomes runnable a second time, at time 4, it gets lower priority than T2 because now
it has a later deadline (time 8 versus 6). Thus, the processor finishes work on the first
period of T2’s work, rather than starting in on the second period of T1’s work.

In this example, there is a tie in priorities at time 8, when T1 becomes runnable
for the third time. Its deadline of 12 is the same as T2's. If you break the priority tie
in favor of the already-running thread, T2, you obtain the preceding Gantt chart. In
practice, this is the correct way to break the tie, because it will result in fewer context
switches. However, in a theoretical sense, any tie-breaking strategy will work equally
well. In Exercise 3.4, you can redraw the Gantt chart on the assumption that T2 is
preempted in order to run T1.

3.5.2 Decay Usage Scheduling

Although we all benefit from real-time control systems, such as those keeping air-
planes in which we ride from crashing, they aren’t the most prominent computers in
our lives. Instead, we mostly notice the workstation computers that we use for daily
chores, like typing this book. These computers may execute a few real-time threads for
tasks such as keeping an MP3 file of music decoding and playing at its natural rate.
However, typically, most of the computer user’s goals are not expressed in terms of
deadlines, but rather in terms of a desire for quick response to interaction and effi-
cient (high throughput) processing of major, long-running computations. Dynamic
priority adjustment can help with these goals too, in operating systems such as Mac
OS X or Microsoft Windows.

hailperin-163001 book October 18, 2005 10:28

58 P Chapter 3 Scheduling

Occasionally, users of general-purpose workstation computers want to express an
opinion about the priority of certain threads in order to achieve goals related to
urgency, importance, or resource allocation. This works especially well for importance;
for example, a search for signs of extra-terrestrial intelligence might be rated a low pri-
ority based on its small chance of success. These user-specified priorities can serve as
base priorities, which the operating system will use as a starting point for its automatic
adjustments. Most of the time, users will accept the default base priority for all their
threads, and so the only reason threads will differ in priority is because of the auto-
matic adjustments. For simplicity, in the subsequent discussion, I will assume that all
threads have the same base priority.

In this kind of system, threads that tie for top priority after incorporating the
automatic adjustments are processed in a round-robin fashion, as discussed earlier.
That is, each gets to run for one time slice, and then the scheduler switches to the next
of the threads. The length of time each thread is allowed to run before switching may
also be called a quantum, rather than a time slice. The thread need not run for its full
time slice; it could, for example, make an I/O request and go into a waiting state long
before the time slice is up. In this case, the scheduler would immediately switch to the
next thread.

One reason for the operating system to adjust priorities is to maximize throughput
in a situation in which one thread is processor-bound and another is disk-bound. For
example, in Chapter 2, I introduced a scenario where the user is running a processor-
intensive graphics rendering program in one window, while running a disk-intensive
virus scanning program in another window. As I indicated there, the operating sys-
tem can keep both the processor and the disk busy, resulting in improved throughput
relative to using only one part of the computer system at a time. While the disk is
working on a read request from the virus scanner, the processor can be doing some
of the graphics rendering. As soon as the disk transaction is complete, the scheduler
should switch the processor’s attention to the virus scanner. That way, the virus scan-
ner can quickly look at the data that was read in and issue its next read request, so
that the disk drive can get back to work without much delay. The graphics program
will have time enough to run again once the virus scanning thread is back to wait-
ing for the disk. In order to achieve this high-throughput interleaving of threads, the
operating system needs to assign the disk-intensive thread a higher priority than the
processor-intensive one.

Another reason for the operating system to adjust priorities is to minimize response
time in a situation where an interactive thread is competing with a long-running com-
putationally intensive thread. For example, suppose that you are running a program
in one window that is trying to set a new world record for computing digits of 7, while
in another window you are typing a term paper. During the long pauses while you

hailperin-163001

book October 18, 2005 10:28

3.5 Dynamic-Priority Scheduling <« 59

rummage through your notes and try to think of what to write next, you don’t mind
the processor giving its attention to computing =. But the moment you have an inspi-
ration and start typing, you want the word processing program to take precedence, so
that it can respond quickly to your keystrokes. Therefore, the operating system must
have given this word processing thread a higher priority.

Notice that in both these situations, a computationally intensive thread is compet-
ing with a thread that has been unable to use the processor for a while, either because
it was waiting for a disk transaction to complete or because it was waiting for the user
to press another key. Therefore, the operating system should adjust upward the prior-
ity of threads that are in the waiting state and adjust downward the priority of threads
that are in the running state. In a nutshell, that is what decay usage schedulers, such
as the one in Mac OS X, do. The scheduler in Microsoft Windows also fits the same
general pattern, although it is not strictly a decay usage scheduler. I will discuss both
these schedulers in more detail in the remainder of this section.

A decay usage scheduler, such as in Mac OS X, adjusts each thread’s priority down-
ward from the base priority by an amount that reflects recent processor usage by that
thread. (However, there is some cap on this adjustment; no matter how much the
thread has run, its priority will not sink below some minimum value.) If the thread
has recently been running a lot, it will have a priority substantially lower than its base
priority. If the thread has not run for a long time (because it has been waiting for the
user, for example), then its priority will equal the base priority. That way, a thread that
wakes up after a long waiting period will take priority over a thread that has been able
to run.

The thread’s recent processor usage increases when the thread runs and decays
when the thread waits, as shown in Figure 3.9. When the thread has been running, its
usage increases by adding in the amount of time that it ran. When the thread has been
waiting, its usage decreases by being multiplied by some constant every so often; for
example, Mac OS X multiplies the usage by 5/8, eight times per second. Rather than
continuously updating the usage of every thread, the system can calculate most of the
updates to a particular thread’s usage just when its state changes, as I describe in the
next two paragraphs.

The currently running thread has its usage updated whenever it voluntarily yields
the processor, has its time slice end, or faces potential preemption because another
thread comes out of the waiting state. At these points, the amount of time the thread
has been running is added to its usage, and its priority is correspondingly lowered. In
Mac OS X, the time spent in the running state is scaled by the current overall load on
the system before it is added to the thread’s usage. That way, a thread that runs during
a time of high load will have its priority drop more quickly to give the numerous other
contending threads their chances to run.

hailperin-163001 book October 18, 2005 10:28

60 P Chapter 3 Scheduling

()
o0
I3+
3
=]
N N
N ~ \\
Time
Base priority
eI
-~ . Ed P =
g \/ \// —\
g=
[=W

Time

Figure 3.9 In a decay usage scheduler, such as Mac OS X uses, a thread’s usage increases while
it runs and decays exponentially while it waits. This causes the priority to decrease while running and
increase while waiting.

When a thread is done spending time in the waiting state, its usage is adjusted
downward to reflect the number of decay periods that have elapsed. For example, in
Mac OS X, the usage is multiplied by (5/8)", where n is the number of eighths of a
second that have elapsed. Because this is an exponential decay, even a fraction of a
second of waiting is enough to bring the priority much of the way back to the base,
and after a few seconds of waiting, even a thread that previously ran a great deal will
be back to base priority. In fact, Mac OS X approximates (5/8)" as O for n > 30, so any
thread that has been waiting for at least 3.75 seconds will be exactly at base priority.

Microsoft Windows uses a variation on this theme. Recall that a decay usage sched-
uler adjusts the priority downward from the base to reflect recent running and restores
the priority back up toward the base when the thread waits. Windows does the reverse:
when a thread comes out of a wait state, it is given an elevated priority, which then
sinks back down toward the base priority as the thread runs. The net effect is the
same: a thread that has been waiting gets a higher priority than one that has been
running. The other difference is in how the specific numerical size of the change is
calculated. When the thread runs, Windows decreases its priority down to the base
in a linear fashion, as with decay usage scheduling. However, Windows does not use
exponential decay to boost waiting threads. Instead, a thread that has been waiting
is given a priority boost that depends on what it was waiting for: a small boost after
waiting for a disk drive, a larger boost after waiting for input from the keyboard, and

hailperin-163001

book October 18, 2005 10:28

3.5 Dynamic-Priority Scheduling <« 61

so forth. Because the larger boosts are associated with the kinds of waiting that usu-
ally take longer, the net effect is broadly similar to what exponential decay of a usage
estimate achieves.

As described in Section 3.4, a scheduler can store the run queue as an array of
thread lists, one per priority level. In this case, it can implement priority adjustments
by moving threads from one level to another. Therefore, the Mac OS X and Microsoft
Windows schedulers are both considered examples of the broader class of multilevel
feedback queue schedulers. The original multilevel scheduler placed threads into lev-
els primarily based on the amount of main memory they used. It also used longer
time slices for the lower priority levels. Today, the most important multilevel feedback
queue schedulers are those approximating decay-usage scheduling.

One advantage to decreasing the priority of running processes below the base, as in
Mac OS X, rather than only down to the base, as in Microsoft Windows, is that doing
so will normally prevent any runnable thread from being permanently ignored, even if
a long-running thread has a higher base priority. Of course, a Windows partisan could
reply that if base priorities indicate importance, the less important thread arguably
should be ignored. However, in practice, totally shutting out any thread is a bad idea;
one reason is the phenomenon of priority inversion, which I will explain in Chapter 4.
Therefore, Windows has a small escape hatch: every few seconds, it temporarily boosts
the priority of any thread that is otherwise unable to get dispatched.

One thing you may notice from the foregoing examples is the tendency of magic
numbers to crop up in these schedulers. Why is the usage decayed by a factor of 5/8,
eight times a second, rather than a factor of 1/2, four times a second? Why is the time
quantum for round-robin execution 10 milliseconds under one system and 30 milli-
seconds under another? Why does Microsoft Windows boost a thread’s priority by six
after waiting for keyboard input, rather than by five or seven?

The answer to all these questions is that system designers have tuned the numerical
parameters in each system’s scheduler by trial and error. They have done experiments
using workloads similar to those they expect their system to encounter in real use.
Keeping the workload fixed, the experimenter varies the scheduler parameters and
measures such performance indicators as response time and throughput. No one set
of parameters will optimize all measures of performance for all workloads. However,
by careful, systematic experimentation, parameters can be found that are likely to keep
most users happy most of the time. Sometimes system administrators can adjust one
or more of the parameters to suit the particular needs of their own installations, as
well.

Before leaving decay usage schedulers, it is worth pointing out one kind of user
goal that these schedulers are not very good at achieving. Suppose you have two
processing-intensive threads and have decided you would like to devote two-thirds

hailperin-163001 book October 18, 2005 10:28

62 P Chapter 3 Scheduling

of your processor’s attention to one and one-third to the other. If other threads start
running, they can get some of the processor’s time, but you still want your first thread
to get twice as much processing as any of the other threads. In principle, you might be
able to achieve this resource allocation goal under a decay usage scheduler by appro-
priately fiddling with the base priorities of the threads. However, in practice it is very
difficult to come up with appropriate base priorities to achieve desired processor pro-
portions. Therefore, if this kind of goal is important to a system'’s users, a different
form of scheduler should be used, such as I discuss in Section 3.6.

3.6 Proportional-Share Scheduling

When resource allocation is a primary user goal, the scheduler needs to take a some-
what longer-term perspective than the approaches I have discussed thus far. Rather
than focusing just on which thread is most important to run at the moment, the
scheduler needs to be pacing the threads, doling out processor time to them at con-
trolled rates.

Researchers have proposed three basic mechanisms for controlling the rate at
which threads are granted processor time:

e Fach thread can be granted the use of the processor equally often, just as in a simple
round-robin. However, those that have larger allocations are granted a longer time
slice each time around than those with smaller allocations.

e A uniform time slice can be used for all threads. However, those that have larger
allocations can run more often, because the threads with smaller allocations “sit
out” some of the rotations through the list of runnable threads.

e A uniform time slice can be used for all threads. However, those with larger allo-
cations are chosen to run more often (on the average), because the threads are
selected by a lottery with weighted odds, rather than in any sort of rotation.

The last of these three (lottery scheduling) is not terribly practical, because although
each thread will get its appropriate share of processing time over the long run, there
may be significant deviations over the short run. Consider, for example, a system with
two threads, each of which should get half the processing time. If the time-slice dura-
tion is one-twentieth of a second, each thread should run ten times per second. Yet
one thread might get shut out for a whole second, risking a major loss of responsive-
ness, just by having a string of bad luck. A coin flipped twenty times per second all day
long may well come up heads twenty times in a row at some point. In Programming
Project 3.2, you will calculate the probability and discover that over the course of a
day the chance of one thread or the other going a whole second without running is

hailperin-163001

book October 18, 2005 10:28

3.6 Proportional-Share Scheduling <« 63

actually quite high. Despite this shortcoming, lottery scheduling has received consid-
erable attention in the research literature.

Turning to the two non-lottery approaches, I can illustrate the difference between
them with an example. Suppose three threads (T1, T2, and T3) are to be allocated
resources in the proportions 3:2:1. Thus, T1 should get half the processor’s time, T2
one-third, and T3 one-sixth. If I follow the approach of a round-robin with variable-
size time slices, I might get the following Gantt chart (the times are intended to be
realistic values if interpreted in milliseconds):

T1 T2 T3
0 150 250 300

Taking the other approach, I could use a fixed time slice of 50 milliseconds, but with
T2 sitting out one round in every three, and T3 sitting out two rounds out of three. The
Gantt chart for the first three scheduling rounds would look as follows (thereafter, the
pattern would repeat):

T1 T2 T3 T1 T2 T1
0 50 100 150 200 250 300

Both of these alternatives come into play in the Linux scheduler. In Linux, the
user-specified niceness of a thread controls the proportion of processor time that the
thread will receive. Primarily, this is done by allocating variable-sized time slices, as
in the first Gantt chart. However, the scheduler will under some circumstances sub-
divide large time slices into several smaller ones, in order to make poor interactive
responsiveness less likely. This results in a picture more nearly like the second Gantt
chart. Regardless of how the time slices are subdivided (or not), each normal niceness
thread receives approximately 100 milliseconds per round, whereas an extremely nice
thread can receive as little as 5 milliseconds, and a particularly nasty thread (one with
negative niceness) can get as much as 800 milliseconds.

The proportional-sharing approach I have discussed thus far provides the core of
Linux’s scheduler and is all that matters when the workload consists exclusively of
processor-intensive threads. However, in order to better accomodate threads that also
do I/0, the Linux scheduler includes some elements of a dynamically adjusted priority
scheme as well. Unlike a traditional priority-based scheme, the priorities do not indi-
rectly control how much processor time each thread gets; that remains directly con-
trolled by the allocation of time slices. Instead, the priorities control only how soon
the threads receive their allotted processor time, particularly upon switching from the
waiting state to the runnable state.

hailperin-163001 book October 18, 2005 10:28

64 P Chapter 3 Scheduling

The scheduler keeps track of each thread’s niceness and two other numbers derived
from it: the time slice and the priority. The time slice is controlled exclusively by the
niceness, as described earlier. The priority, on the other hand, starts with a base prior-
ity derived from the niceness, but also incorporates a dynamic adjustment to reflect
the thread’s past behavior. The current version of the Linux scheduler uses a particu-
larly complicated process to calculate the dynamic priority adjustment, but the basic
principle is staightforward: waiting causes the priority to rise, while running causes the
priority to sink—the same basic principle as in decay usage scheduling or the Microsoft
Windows scheduler.

The 40-point niceness control range available to users translates directly into a
40-point base priority range, whereas the dynamic adjustments are at most plus or
minus five points, and may be restricted to even less than that, because the adjusted
priority is limited to stay within the 40-point range. Thus, no matter how much sleep-
ing or running threads do, if two differ by more than 10 niceness points, the nicer
thread will always be lower priority than the less nice thread. In the common case
that the user runs all threads at the default niceness, however, their priority order-
ing will be determined by their behavior, with interactive threads taking priority over
disk-bound threads, which in turn take priority over processor-bound threads.

The Linux scheduler stores the runnable threads in a run queue that contains two
arrays, each with one slot per possible priority value. Each array element is a list of
threads that share that priority value. In other words, each of the two arrays is orga-
nized just like the run queue of a normal priority scheduler. The reason why two arrays
are used is to handle the proportional-share allocation of time slices. One array, the
active array, holds the threads that still have some of their current allocation remain-
ing. The other array, the expired array, holds those threads that have used their entire
current allocation and cannot be run again until new allocations take effect.

Under normal operation, the scheduler runs a thread from the active array, choos-
ing the one at the head of the highest priority list that isn’t empty. If the thread com-
pletes its full time slice, it is placed into the expired array. When the active array is
completely empty, the two arrays are swapped with the expired array now becoming
the active array, so that all the threads can run again. In order that the threads have a
new allocation of time, each thread’s time slice is “charged back up” at the time it is
moved to the expired array. That way, all the threads in the expired array will be ready
to run when that array becomes active.

For compute-bound threads that stay runnable, the priority ordering is irrelevant;
each will run once per time the arrays are swapped. However, for interactive or 1I/O-
bound threads, priority matters. When a thread in the waiting state becomes runnable,
it is inserted into the active array in the position corresponding to its priority. If the
newly runnable thread’s priority is higher than that of the currently running thread,

hailperin-163001

book October 18, 2005 10:28

3.7 Security and Scheduling <« 65

the currently running thread is preempted, so that the new higher-priority thread
can run immediately instead. Thus, threads that have high priority will receive fast
response time, whether the high priority is because the user gave them a low niceness,
or because the scheduler noticed they waited more than they ran.

If the scheduler preempts a thread before it has consumed its time slice, the thread
remains in the active array, so that it can finish the time slice up without waiting for
the next array swap.

One final complication in the Linux scheduler is worth pointing out, although it
doesn’t change the overall picture. Recall that normally when a thread consumes its
tull time slice, it is charged back up with a new time slice and placed in the expired
array to await the next swap. However, under limited circumstances, the scheduler
returns the recharged thread to the active array, rather than placing it in the expired
array. Thus, the thread will be granted another full time slice, while the threads in the
expired array continue to wait for their next time slice.

Clearly this exceptional treatment confounds the basic proportional sharing idea;
threads that receive extra time slices will be able to use more of the processor than
their niceness would normally allow. Also, if threads were repeatedly returned to the
active array, the threads in the expired array would receive very poor response time;
in the worst case, they might suffer complete starvation, never receiving any processor
time.

To mitigate these problems, the Linux scheduler returns recharged threads to the
active array only if they have a sufficient combination of interactive behavior (wait-
ing more than running) and low niceness. Those threads may need just a bit more
processor time to get back to waiting and may have an impatient user. Moreover, to
prevent starvation, if enough time elapses without the expired array getting a chance
to become active, the exception is suppressed entirely.

3.7 Security and Scheduling

The kind of attack most relevant to scheduling is the denial of service (DoS) attack, that
is, an attack with the goal of preventing legitimate users of a system from being able to
use it. Denial of service attacks are frequently nuisances motivated by little more than
the immaturity of the perpetrators. However, they can be part of a more sophisticated
scheme. For example, consider the consequences if a system used for coordinating a
military force were vulnerable to a denial of service attack.

The most straightforward way an attacker could misuse a scheduler in order to
mount a denial of service attack would be to usurp the mechanisms provided for
administrative control. Recall that schedulers typically provide some control parameter

hailperin-163001 book October 18, 2005 10:28

66 P Chapter 3 Scheduling

for each thread, such as a deadline, a priority, a base priority, or a resource share. An
authorized system administrator needs to be able to say “This thread is a really low
priority” or the analogous statement about one of the other parameters. If an attacker
could exercise that same control, a denial of service attack could be as simple as giving
a low priority to a critical thread.

Therefore, real operating systems guard the thread-control interfaces. Typically,
only a user who has been authenticated as the “owner” of a particular thread or as a
bona fide system administrator can control that thread’s scheduling parameters. Nat-
urally, this relies upon other aspects of the system’s security that I will consider in later
chapters: the system must be protected from tampering, must be able to authenticate
the identity of its users, and must be programmed in a sufficiently error-free fashion
that its checks cannot be evaded.

Because real systems guard against an unauthorized user de-prioritizing a thread,
attackers use a slightly more sophisticated strategy. Rather than de-prioritizing the
targeted thread, they compete with it. That is, the attackers create other threads that
attempt to siphon off enough of a scarce resource, such as processor time, so that little
or none will be left for the targeted thread.

One response of system designers has been to arrange that any denial of service
attack will be sufficiently cumbersome that it can be easily distinguished from normal
behavior and hence interdicted. For example, recall that a single thread at a high fixed
priority could completely starve all the normal threads. Therefore, most systems pro-
hibit normal users from running such threads, reserving that privilege to authorized
system administrators. In fact, typical systems place off-limits all fixed priorities and
all higher-than-normal priorities, even if subject to decay-usage adjustment. The result
is that an attacker must run many concurrent threads in order to drain off a signif-
icant fraction of the processor’s time. Because legitimate users generally won’t have
any reason to do that, denial of service attacks can be distinguished from ordinary
behavior. A limit on the number of threads per user will constrain denial of service
attacks without causing most users much hardship. However, there will inevitably be
a trade-off between the degree to which denial of service attacks are mitigated and the
degree to which normal users retain flexibility to create threads.

Alternatively, a scheduling policy can be used that is intrinsically more resistant
to denial of service attacks. In particular, proportional-share schedulers have consider-
able promise in this regard. The simple version that Linux includes is still vulnerable to
attack using a large number of threads. However, as I mentioned earlier, a more sophis-
ticated version can assign resource shares to users or other larger groups, with those
shares subject to hierarchical subdivision. This was originally proposed by Waldspurger
as part of lottery scheduling, which I observed is disfavored because of its susceptibility

hailperin-163001

book October 18, 2005 10:28

Exercises <« 67

to short-term unfairness in the distribution of processing time. However, Waldspurger
later showed how the same hierarchical approach could be used with stride scheduling,
a deterministic proportional-share scheduler.

Long-running server threads, which over their lifetimes may process requests orig-
inating from many different users, present an additional complication. If resources are
allocated per user, which user should be funding the server thread’s resource consump-
tion? The simplest approach is to have a special user just for the purpose with a large
enough resource allocation to provide for all the work the server thread does on behalf
of all the users. Unfortunately, that is too coarse-grained to prevent denial of service
attacks. If a user submits many requests to the server thread, he or she may use up its
entire processor time allocation. This would deny service to other users’ requests made
to the same server thread. Admittedly, threads not using the service will be isolated
from the problem, but that may be small solace if the server thread in question is a
critical one.

To address this issue, recent research has suggested that threads should be able to
switch from one user’s resource allocation to another, as the threads handle different
requests. The idea is to allocate resources not directly to threads, but to independent
resource containers instead. At any one time, each thread draws resources from one
resource container. However, it can switch to drawing from a different resource con-
tainer. This solves the problem of fairly accounting for server threads’ usage. Because
multiple threads can be made to draw out of a single resource container, the same pro-
posal also can prevent users from receiving more processor time by running more
threads.

Finally, keep in mind that no approach to processor scheduling taken alone will
prevent denial of service attacks. An attacker will simply overwhelm some other
resource than processor time. For example, in the 1990s, attackers frequently targeted
systems’ limited ability to establish new network connections. Nonetheless, a com-
prehensive approach to security needs to include processor scheduling, as well as net-
working and other components.

Exercises

3.1 Gantt charts, which Iintroduced in the context of hard-real-time scheduling, can
also be used to illustrate other scheduling concepts, such as those concerning
response time. Suppose thread T1 is triggered by an event at time 0 and needs
to run for 1.5 seconds before it can respond. Suppose thread T2 is triggered by
an event occuring 0.3 seconds later than T1’s trigger, and that T2 needs to run

hailperin-163001

68

3.2

3.3

3.4

3.5

book October 18, 2005 10:28

» Chapter 3 Scheduling

0.2 seconds before it can respond. Draw a Gantt chart for each of the following

three cases, and for each indicate the response time of T1, the response time of

T2, and the average response time:

(a) T1 is allowed to run to completion before T2 is run.

(b) T1 is preempted when T2 is triggered; only after T2 has completed does T1
resume.

(c) T1 is preempted when T2 is triggered; the two threads are then executed in
a round-robin fashion (starting with T2), until one of them completes. The
time slice (or quantum) is .05 seconds.

Suppose a Linux system is running three threads, each of which runs an infinite
loop with nothing in the body, so that it just chews up as much processor time as
itis given. One thread is run by one user, whereas the other two threads are run by
a second user (perhaps logged in over the network or in a second virtual console).
Does the scheduler give each user a fair share (one-half) of the processor’s time,
or does it give each thread a fair share (one-third)? You can answer this question
from the text of this chapter, but see also Exploration Project 3.1. Also, which
behavior would you prefer? Explain why.

Draw a Gantt chart for two threads, T1 and T2, scheduled in accordance to fixed
priorities with T2 at a higher priority than T1. Both threads run periodically. One,
T1, has a period and deadline of four seconds and an execution time per period
of two seconds. The other, T2, has a period and deadline of six seconds and an
execution time per period of three seconds. Assume both threads start a period
at time 0. Draw the Gantt chart far enough to show one of the threads missing
a deadline.

Draw a Gantt chart for two threads, T1 and T2, scheduled in accordance with the
Earliest Deadline First policy. If the threads are tied for earliest deadline, preempt
the already-running thread in favor of the newly runnable thread. Both threads
run periodically. One, T1, has a period and deadline of four seconds and an exe-
cution time per period of two seconds. The other, T2, has a period and deadline
of six seconds and an execution time per period of three seconds. Assume both
threads start a period at time 0. Draw the Gantt chart to the point where it would
start to repeat. Are the deadlines met?

Suppose a system has three threads (T1, T2, and T3) that are all available to run
at time O and need one, two, and three seconds of processing, respectively. Sup-
pose that each thread is run to completion before starting another. Draw six
different Gantt charts, one for each possible order the threads can be run in.
For each chart, compute the turnaround time of each thread; that is, the time
elapsed from when it was ready (time 0) until it is complete. Also, compute the

hailperin-163001 book

October 18, 2005 10:28

Programming Projects <« 69

average turnaround time for each order. Which order has the shortest average
turnaround time? What is the name for the scheduling policy that produces
this order?

2 Programming Projects

3.1

3.2

On a system where you can install modified Linux kernels, test the effect of elim-
inating dynamic priority adjustments. (You will find the relevant code in the file
kernel/sched.c.) You should be able to demonstrate that there is no change
in how compute-bound processes share the processor in accordance with their
niceness. You should also be able to demonstrate that the responsiveness of inter-
active processes is degraded when there are lots of compute-bound processes run-
ning as well. Rather than testing response time with a process that reads input
from the user, you can more easily get quantitative results with a process that
repeatedly sleeps and measures how much longer each sleeping period actually
is than was requested. Write a report in which you explain what you did, and
the hardware and software system context in which you did it, carefully enough
that someone could replicate your results.

Consider a coin that is weighted so that it comes up heads with probability p and

tails with probability 1 — p, for some value of p between 0 and 1. Let f(n, k, p) be

the probability that in a sequence of n tosses of this coin there is a run of a least

k consecutive heads.

(a) Prove that f(n, k, p) can be defined by the following recurrence. If n < Kk,
fnk,p)=0.Ifn=k, f(nk, p)=p~. If n>k,

fnk, p)= f(n—1,k p)+ p*A - p)1 — f(n—k—1,k, p)).

(b) Write a program to calculate f(n, k, p) using the above recurrence. To make
your program reasonably efficient, you will need to use the algorithm design
technique known as dynamic programing. That is, you should create an
n+ 1 element array, and then for i from O to n, fill in element i of the array
with f(i, k, p). Whenever the calculation of one of these values of [requires
another value of f, retrieve the required value from the array, rather than
using a recursive call. At the end, return element n of the array.

(c) If threads A and B each are selected with probability 1/2 and the time slice
is 1/20 of a second, the probability that sometime during a day thread A will
go a full second without running is f(20-60 - 60 - 24, 20, 1/2). Calculate this
value using your program.

(d) The system’s performance is no better if thread B goes a long time without
running than if thread A does. This leads one to consider the probability that

hailperin-163001

70

book October 18, 2005 10:28

» Chapter 3 Scheduling

in n tosses of a fair coin there are at least k consecutive heads or k consecutive
tails. Show that this probability is f(m—1, k—1, 1/2). Use this to calculate the
probability that one or the other of threads A and B goes a second without
processor time in the course of a day.

/O Exploration Projects

3.1

3.2

Experimentally verify your answer to Exercise 3.2 with the help of another user.
The top command will show you what fraction of the processor each thread gets.

Experimentally measure the impact of niceness on the amount of processor time
given to compute-bound threads under as many UNIX-like uniprocessor systems
as you have access to. This will be most interesting if you can compare a system
with a proportional-share scheduler (such as Linux) with a system that uses a
decay usage scheduler (such as Mac OS X or most older versions of UNIX). Be
sure to experiment on a system that is otherwise idle. Write a simple test pro-
gram that just loops. Run one copy normally (niceness 0) and another using the
nice command at elevated niceness. Use the top command to observe what
fraction of the processor each thread gets. Repeat the test using different degrees
of elevated niceness, from 1 to 19. Also, repeat the test in situations other than
one thread of each niceness; for example, what if there are four normal nice-
ness threads and only one elevated niceness thread? Write a report in which you
explain what you did, and the hardware and software system context in which
you did it, carefully enough that someone could replicate your results. Try to
draw some conclusions about the suitability of niceness as a resource allocation
tool on the systems you studied.

Notes

I introduced the notion of thread states by explaining the inefficiency of busy waiting
and indicated that the alternative is for a thread that wants to wait to notify the oper-
ating system. This issue was recognized early in the history of operating systems. For
example, the same 1959 paper [30] by Codd et al. that I quoted in Chapter 2 remarks,

“For

the sake of efficient use of the machine, one further demand is made of the pro-

grammer or compiler. When a point is reached in a problem program beyond which
activity on the central processing unit cannot proceed until one or more input-output
operations are completed, the control must be passed to the supervisory program so

that

other problem programs may be serviced.” (The “supervisory program” is what

today is called an operating system.)

hailperin-163001

book October 18, 2005 10:28

Notes « 71

I remarked that the main cost of thread switching is lost cache performance. This
observation has been quantified in various measurement studies, such as one by
Regehr [103].

I use the terms quantum and time slice interchangeably, in keeping with contem-
porary usage. Early operating systems used these words differently: quanta were finer
subdivisions of coarser time slices. A subset of the runnable threads would get brief
quanta in a round-robin. When a thread had received enough quanta to use up its
whole time slice, it would be moved out of the round-robin for a while, and another
thread would move in to take its place.

I mentioned fair-share, multilevel feedback queue, lottery, and stride scheduling
only in passing. Early references for them are numbers [77], [34], [132], and [133],
respectively.

Liu and Layland wrote a seminal 1973 article on hard-real-time scheduling [91].
For a survey of how rate-monotonic scheduling has been generalized to more realistic
circumstances, see the article by Sha, Rajkumar, and Sathaye [115].

I drew examples from three real systems’ schedulers: Mac OS X, Microsoft Win-
dows, and Linux. For two of these (Mac OS X and Linux), the only reliable way to find
the information is by reading the kernel source code, as I did (versions Darwin 6.6 and
Linux 2.6.11). For Microsoft Windows, the source code is not publicly available, but
conversely, one doesn’t need to dig through it to find a more detailed description than
mine: there is a very careful one in Russinovich and Solomon’s book [109].

My segue from decay usage scheduling to proportional-share scheduling was the
remark that one could, in principle, achieve proportional shares by suitably setting the
base priorities of a decay usage scheduler, but that in practice, it was difficult to map
proportions to base priorities. The mathematical modeling study by Hellerstein [66]
provides evidence for both aspects of this claim. Hellerstein explicitly shows that one
can, in principle, achieve what he terms “service rate objectives.” However, less explic-
itly, he also shows this is not practical; reading his graphs carefully, one can see that
there are two choices. Either the service rates are so insensitive to the base priorities as
to render most proportions out of reach, or there is a region of such extreme sensitivity
that one jumps over many potential proportions in stepping from one base priority
difference to the next.

Resource containers are described by Banga, Druschel, and Mogul [9].

