MCS-287 Homework 8 (Spring 2012)

Max Hailperin

Due May 10, 2012

- Do Exercise 21.1 on page 468.
- Do Exercise 21.2 on page 468.
- Exercise 23.x1: Using the natural semantics for Language One, show how the conclusion

$$
\text { plus (const (4), times (const (3), const (2))) } \rightarrow 10
$$

would be derived. That is, what are the immediately preceding premises from which a rule allows this conclusion to be derived? And for any of those immediately preceding premises that is itself a consequence of applying some rule to earlier premises, what are those? (You can structure this as a tree, as demonstrated in class.)

- Exercise 23.x2: Suppose we replace the natural semantics for Language One with the following nonstandard semantics. Be sure to read it carefully; it does not include a typo:

$$
\begin{gathered}
\frac{E_{1} \rightarrow v_{1} \quad E_{2} \rightarrow v_{2}}{\operatorname{plus}\left(E_{1}, E_{2}\right) \rightarrow v_{1}+v_{2}} \\
\frac{E_{1} \rightarrow v_{1} \quad E_{2} \rightarrow v_{2}}{\operatorname{times}\left(E_{1}, E_{2}\right) \rightarrow v_{1}+v_{2}} \\
\operatorname{const}(n) \rightarrow 1
\end{gathered}
$$

1. Show a derivation, using this nonstandard semantics, of a value for the AST
```
plus(times(const(4),const(5)),times(const(6),const(7)))
```

(You can structure this as a tree, as demonstrated in class.)
2. This nonstandard semantics does not produce the value of an expression in the usual sense of "value." Give a succinct English description of what property of the expression it does produce.

- Exercise 23.x3: Using the natural semantics for Language Two, show how the conclusion

$$
\langle\operatorname{let}(x, \text { const (3), times }(\operatorname{var}(x), \text { const (5))) },[]\rangle \rightarrow 15
$$

would be derived. That is, what are the immediately preceding premises from which a rule allows this conclusion to be derived? And for any of those immediately preceding premises that is itself a consequence of applying some rule to earlier premises, what are those? (You can structure this as a tree, as demonstrated in class.)

