# An Example Inductive Proof for MCS-236 

Max Hailperin

September 19, 2011

Theorem 1 For any natural number n,

$$
\sum_{i=1}^{n}(2 i-1)=n^{2}
$$

Proof. [induction] So long as the sum has at least one term (that is, $n>0$ ), we can split the last term from the rest of the sum, writing

$$
\begin{equation*}
\sum_{i=1}^{n}(2 i-1)=\sum_{i=1}^{n-1}(2 i-1)+(2 n-1) \tag{1}
\end{equation*}
$$

Because $n-1$ is smaller than $n$ and remains nonnegative, we can inductively assume that

$$
\begin{equation*}
\sum_{i=1}^{n-1}(2 i-1)=(n-1)^{2} \tag{2}
\end{equation*}
$$

Substituting Equation 2 into Equation 1 and doing the algebra, we finish the inductive case as follows:

$$
\begin{aligned}
\sum_{i=1}^{n}(2 i-1) & =(n-1)^{2}+(2 n-1) \\
& =n^{2}-2 n+1+(2 n-1) \\
& =n^{2}
\end{aligned}
$$

Because this reasoning relied upon the sum having at least one term, we are left to consider $n=0$ as a base case. When the sum is empty, its value is automatically 0 , so we can confirm that

$$
\sum_{i=1}^{0}(2 i-1)=0=0^{2}
$$

